Advanced Search
Volume 40 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
YAN Wei, GENG Lu, ZHOU Lei, ZHAO Yang, WANG Enrong, ZHU Da. Optimization Analysis Method on Ship RCS Based on Sea Conditions and Cubic Spline Interpolation Algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(3): 579-586. doi: 10.11999/JEIT170562
Citation: YAN Wei, GENG Lu, ZHOU Lei, ZHAO Yang, WANG Enrong, ZHU Da. Optimization Analysis Method on Ship RCS Based on Sea Conditions and Cubic Spline Interpolation Algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(3): 579-586. doi: 10.11999/JEIT170562

Optimization Analysis Method on Ship RCS Based on Sea Conditions and Cubic Spline Interpolation Algorithm

doi: 10.11999/JEIT170562
Funds:

The National Natural Science Foundation of China (51475246), The Natural Science Foundation of Jiangsu Province (BK20161019, BK20131032), The University Science Research Project of Jiangsu Province (15KJB470011)

  • Received Date: 2017-06-09
  • Rev Recd Date: 2017-11-03
  • Publish Date: 2018-03-19
  • The sea under different wave levels has an strong impact on the ship target Radar Cross Section (RCS) analysis. The far-field single-station RCS analysis model is established for the ship under different sea conditions based on the Physical Optics with Method Of Moments (PO-MOM) hybrid algorithm. Then the impact of sea conditions on ship RCS results is studied. The ship RCS results are reduced with the sea wave level increasing. Finally, an optimization ship RCS compensation method is proposed under different sea conditions based on Cubic Spline Interpolation (CSI) algorithm. The results show that the average value error and maximum value error of ship RCS results are less than 0.38 dBsm and 0.05 dBsm, respectively by employing the proposed method, which can reduce the influence of sea conditions on ship RCS analysis effectively.
  • loading
  • 朱英富, 张国良. 舰船隐身技术[M]. 哈尔滨: 哈尔滨工程大学, 2003: 10-23.
    ZHU Yingfu and ZHANG Guoliang. Hiding Technology of Vessel[M]. Harbin: Harbin Engineering University, 2003: 10-23.
    许小剑, 李晓飞, 习桂杰, 等. 时变海面雷达目标散射现象学模型[M]. 北京: 国防工业出版社, 2013: 218-224.
    XU Xiaojian, LI Xiaofei, XI Guijie, et al. Radar Phenomenological Models for Ships on Time-evolving Sea Surface[M]. Beijing: National Defense Industry Press, 2013: 218-224.
    崔凯, 许小剑, 毛士艺. 基于高频混合方法的海上目标电磁散射特性分析[J]. 电子与信息学报, 2008, 30(6): 1500-1503. doi: 10.3724/SP.J.1146.2006.01866.
    CUI Kai, XU Xiaojian, and MAO Shiyi. EM backscattering of simplified ship model over sea surface based on a high frequency hybrid method[J]. Journal of Electronics Information Technology, 2008, 30(6): 1500-1503. doi: 10.3724/SP.J.1146.2006.01866.
    GANESH M M, JAGADEESH V K, and ROOPCHAND J. Computation and analysis of RCS for a kinetic energy type anti armour missile at Ka band[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 47(1): 45-59. doi: 10.3233/JAE-130139.
    LI Yajun, WEI Yinsheng, ZHU Yongpeng, et al. Analysis and simulation for broadening first-order sea clutter spectrum in high frequency hybrid sky-surface wave propagation mode[J]. IET Radar, Sonar Navigation, 2015, 9(6): 609-621. doi: 10.1049/iet-rsn.2014.0008.
    PASQUALE I, RAFFAELLA G, and PHILIP W. A model for the backscattering from a canonical ship in SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1163-1175. doi: 10.1109/JSTARS.2015.2443557.
    MIANROODI R Y, HEIDAR H, and ARMAKI H M. Expandable shipboard decoy including adequate RCS by using trihedral corner reflectors[J]. IET Science, Measurement Technology, 2016, 10(5): 485-491. doi: 10.1049/iet-smt.2015.0228.
    LI Chao, HE Siyuan, YANG Jiong, et al. Monostatic scattering from two-dimensional two-layer rough surfaces using hybrid 3DMLUV-ACA method[J]. International Journal of Applied Electromagnetics and Mechanics, 2013, 42(1): 1-11. doi: 10.3233/JAE-121640.
    LIU Peng and JIN Yaqiu. The finite-element method with domain decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large-scale rough sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(5): 950-956. doi: 10.1109/TGRS.2004.825583.
    关莹, 龚书喜, 张帅, 等. NURBS曲面建模的电大目标的宽带RCS快速计算[J]. 电子与信息学报, 2010, 32(11): 2730-2734. doi: 10.3724/SP.J.1146.2009.01637.
    GUAN Ying, GONG Shuxi, ZHANG Shuai, et al. Fast computation of wideband RCS of electrically large targets modeled with NURBS surfaces[J]. Journal of Electronics Information Technology, 2010, 32(11): 2730-2734. doi: 10.3724/SP.J.1146.2009.01637.
    KIM K, KIM J H, KIM Y H, et al. Numerical investigation on dynamic radar cross section of naval ship considering ocean wave-induced motion[J]. Progress In Electromagnetics Research M, 2012, 27(1): 11-26. doi: 10.2528/PIERM 12101211.
    CERRUTI M, PASTORINO M, RANDAZZO A, et al. A radar cross section and radar performance evaluation tool for the early stage ship design (ESSD) phase[C]. Oceans, Genova, Italy, 2015: 1-5.
    ZHAO Ye, YUAN Xiaofeng, ZHANG Min, et al. Radar scattering from the composite ship-ocean scene: facet-based asymptotical model and specular reflection weighted model[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(9): 4810-4815. doi: 10.1109/TAP.2014.2330869.
    XU Feng and JIN Yaqiu. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(7): 1495-1505. doi: 10.1109/TAP.2009.2016691.
    HOSSEIN B and MOJTABA D. RCS of a target above a random rough surface with impedance boundaries using GO and PO methods[C]. Antennas and Propagation Society International Symposium, Chicago, USA, 2012: 1-2.
    ZHANG Lanchao and JIANG Tao. Analysis of radio wave scattering from rough sea surfaces based on high frequency approximation algorithm[C]. Antennas and Propagation, Harbin, China, 2014: 963-966.
    ZHANG Min, ZHAO Ye, LI Jinxing, et al. Reliable approach for composite scattering calculation from ship over a sea surface based on FBAM and GO-PO models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 775-784. doi: 10.1109/TAP.2016.2633066.
    MEANA J G, MARTINE LORENZO J A, RAPPAPORT C, et al. A PO-MoM comparison for electrically large dielectric geometries[C]. Antennas and Propagation Society International Symposium, Piscataway, USA, 2009: 1-4.
    崔浩, 舒朝君, 王亚. 基于三次样条插值的盐度监测控制装置的温度补偿算法[J]. 仪表技术与传感器, 2016, (6): 88-91. doi: 10.3969/j.issn.1002-1841.2016.06.026.
    CUI Hao, SHU Chaojun, and WANG Ya. Temperature compensation of salinity monitoring and control device based on cubic spline interpolation[J]. Instrument Technique and Sensor, 2016, (6): 88-91. doi: 10.3969/j.issn.1002-1841.2016. 06.026.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1293) PDF downloads(228) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return