Citation: | WANG Xiaofeng, ZHANG Minglu, LIU Jun. Robot Perceptual Learning Method Based on Incremental Bidirectional Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(3): 618-625. doi: 10.11999/JEIT170561 |
GATSOULIS Y and MCGINNITY T M. Intrinsically motivated learning systems based on biologically-inspired novelty detection[J]. Robotics and Autonomous Systems, 2015, 68: 12-20. doi: 10.1016/j.robot.2015.02.006.
|
WENG J Y, MCCLELLAND J, PENTLAND A, et al. Artificial intelligence-autonomous mental development by robots and animals[J]. Science, 2001, 291(5504): 599-600. doi: 10.1126/science.291.5504.599.
|
JI ZP and WENG J Y. A developmental wherewhat network for concurrent and interactive visual attention and recognition[J]. Robotics and Autonomous Systems, 2015, 71: 35-48. doi: 10.1016/j.robot.2015.03.004.
|
SIGAUD O and DRONIOU A. Towards deep developmental learning[J]. IEEE Transactions on Cognitive and Developmental Systems, 2016, 8(2): 99-114. doi: 10.1109/ TAMD.2015.2496248.
|
YAN H, ANG M H and POO A N. A Survey on perception methods for human-robot interaction in social robots[J]. International Journal of Social Robotics, 2014, 6(1): 85-119. doi: 10.1007/s12369-013-0199-6.
|
LI Lingjun, LIU Shigang, PENG Yali, et al. Overview of principal component analysis algorithm[J]. Optik- International Journal for Light and Electron Optics, 2016, 127(9): 3935-3944. doi: 10.1016/j.ijleo.2016.01.033.
|
PARK G and KONNO A. Imitation learning framework based on principal component analysis[J]. Advanced Robotics, 2015, 29(9): 639-656. doi: 10.1080/01691864.2015.1007084.
|
WENG J Y, ZHANG Y L, and HWANG W S. Candid covariance-free incremental principal component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8): 1034-1040. doi: 10.1109/TPAMI. 2003.1217609.
|
谢自强, 葛为民, 王肖锋, 等. 发展型机器人实时特征提取方法研究[J]. 机器人, 2017, 39(2): 189-196. doi: 10.13973/ j.cnki.robot.2017.0189.
|
XIE Ziqiang, GE Weimin, WANG Xiaofeng, et al. Real time feature extraction method of developmental robot[J]. Robot, 2017, 39(2): 189-196. doi: 10.13973/j.cnki.robot.2017.0189.
|
BAI H L and CHEN M. CCIPCA-OPCSC: An online method for detecting shared congestion paths[J]. Computer Networks, 2012, 56(1): 399-411. doi: 10.1016/j.comnet.2011.09.016.
|
WANG J. Generalized 2-D principal component analysis by Lp-Norm for image analysis[J]. IEEE Transactions on Cybernetics, 2016, 46(3): 792-803. doi: 10.1109/TCYB.2015. 2416274.
|
曹明明, 干宗良, 崔子冠, 等. 基于2D-PCA特征描述的非负权重邻域嵌入人脸超分辨率重建算法[J]. 电子与信息学报, 2015, 37(4): 777-783. doi: 10.11999/JEIT140739.
|
CAO Mingming, GAN Zongliang, CUI Ziguan, et al. Novel neighbor embedding face hallucination based on non-negative weights and 2D-PCA feature[J]. Journal of Electronics Information Technology, 2015, 37(4): 777-783. doi: 10.11999/ JEIT140739.
|
YANG Wankou, SUN Changyin, and RICANEK K. Sequential row-column 2DPCA for face recognition[J]. Neural Computing and Applications, 2012, 21(7): 1729-1735. doi: 10.1007/s00521-011-0676-5.
|
XU F, GU G, KONG X, et al. Object tracking based on two- dimensional PCA[J]. Optical Review, 2016, 23(2): 231-243. doi: 10.1007/s10043-015-0178-2.
|
HUANG J, MA Y, MEI X G, et al. A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA[J]. Infrared Physics Technology, 2016, 79: 68-73. doi: 10.1016/j.infrared.2016.09.009.
|
PEI J, HUANG Y, HUO W, et al. SAR imagery feature extraction using 2DPCA-based two-dimensional neighborhood virtual points discriminant embedding[J]. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2017, 9(6): 2206-2214. doi: 10.1109/JSTARS.2016.2555938.
|
ZUO Wangmeng, ZHANG David, and WANG Kuanquan. Bidirectional PCA with assembled matrix distance metric for image recognition[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 2006, 36(4): 863-872. doi: 10.1109/TSMCB.2006.872274.
|
SUN Yanfeng, CHEN Shangyou, and YIN Baocai. Color face recognition based on quaternion matrix representation[J]. Pattern Recognition Letters, 2011, 32(4): 597-605. doi: 10.1016/j.patrec.2010.11.004.
|
YANG Wankou, SUN Changyin, ZHANG Lei, et al. Laplacian bidirectional PCA for face recognition[J]. Neurocomputing, 2010, 74(1/3): 487-493. doi: 10.1016/j. neucom.2010.08.020.
|
NGUYEN T H B and KIM H. Novel and efficient pedestrian detection using bidirectional PCA[J]. Pattern Recognition, 2013, 46(8): 2220-2227. doi: 10.1016/j.patcog.2013.01.007.
|
REN Chuanxian and DAI Daoqing. Incremental learning of bidirectional principal components for face recognition[J]. Pattern Recognition, 2010, 43(1): 318-330. doi: 10.1016/ j.patcog.2009.05.020.
|
余映, 王斌, 张立明. 一种面向数据学习的快速PCA算法[J]. 模式识别与人工智能, 2009, 22(4): 567-573. doi: 10.16451/ j.cnki.issn1003-6059.2009.04.003.
|
YU Ying, WANG Bin, and ZHANG Liming. A fast data- oriented algorithm for principal component analysis[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(4): 567-573. doi: 10.16451/j.cnki.issn1003-6059.2009.04.003.
|