Advanced Search
Volume 40 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
ZHAO Peiyan, OUYANG Xinxin, PENG Huafeng. A Phase Delay Estimation Algorithm of Frequency Hopping Signal Based on Chinese Reminder Theorem[J]. Journal of Electronics & Information Technology, 2018, 40(3): 656-662. doi: 10.11999/JEIT170544
Citation: ZHAO Peiyan, OUYANG Xinxin, PENG Huafeng. A Phase Delay Estimation Algorithm of Frequency Hopping Signal Based on Chinese Reminder Theorem[J]. Journal of Electronics & Information Technology, 2018, 40(3): 656-662. doi: 10.11999/JEIT170544

A Phase Delay Estimation Algorithm of Frequency Hopping Signal Based on Chinese Reminder Theorem

doi: 10.11999/JEIT170544
  • Received Date: 2017-06-07
  • Rev Recd Date: 2017-11-03
  • Publish Date: 2018-03-19
  • The bandwidth of each hop in frequency hopping signal is very narrow, and the accumulating between multiple hop is difficult, thus the accuracy of time delay estimation for frequency hopping is low. To deal with the problem, the potential of wide band hopping of frequency hopping signal is fully exploited. A multi-frequency phase delay estimation model is established, and the problem of time delay estimation is transformed into ambiguity resolution. Then, Chinese Remainder Theorem (CRT) is used to solve the ambiguity, but in the non-cooperation scene the module can not be chosen easily, thus an extrapolation method for interferometric phase based on virtual frequency is proposed to relax the constraint of module selection. Finally, the closed-form Robust Chinese Remainder Theorem (RCRT) is used to solve the ambiguity, and the phase delay is obtained with high accuracy. Compared with the conventional algorithm, the proposed algorithm has the advantages of high precision, low computation complexity and independence on the propagation characteristics of the channel. The simulation results verify the validity and correctness of the proposed model and algorithm.
  • loading
  • CHAMPAGNE B, BEDARD S, and STEPHENNE A. Performance of time delay estimation in presence of room reverberation[J]. IEEE Transactions on, Speech and Audio Processing, 1996, 4(2): 148-152.
    KNAPP C H and CARTER G C. The generalized correlation method for estimation of time delay[J]. IEEE Transactions on Acoust, Speech, and Signal Processing, 1976, 24(4): 320-327.
    欧阳鑫信, 万群, 熊瑾煜, 等. 慢跳跳频信号的时差估计方法[J]. 现代雷达, 2016, 38(2): 19-22. doi: 10.16592/j.cnki.1004- 7859.2016.02.005.
    OUYANG Xinxin, WAN Qun, XIONG Jinyu, et al. A new time delay estimate method of wide-band FH signal and precision analysis[J]. Modern Radar, 2016, 38(2): 19-22. doi: 10.16592/j.cnki.1004-7859.2016.02.005.
    刘伟, 罗景青. 一种新的宽带跳频信号时延估计方法及精度分析[J]. 信号处理, 2010, 26(9): 1323-1328.
    LIU Wei and LUO Jingqing. A new time delay estimate method of wide-band FH signal and precision analysis[J]. Signal Processing, 2010, 26(9): 1323-1328.
    陆晨曦, 李宏宇, 年丰, 等. 一种应用于射频系统群时延测量的相关峰精化算法[J]. 电子与信息学报, 2013, 35(12): 2921-2926. doi: 10.3724/SP.J.1146.2013.00221.
    LU Chenxi, LI Hongyu, NIAN Feng, et al. A correlation-peak fining algorithm for group delay measurement of radio frequency system[J]. Journal of Electronics Information Technology, 2013, 35(12): 2921-2926. doi: 10.3724/SP.J.1146. 2013.00221.
    吴亚军, 刘庆会, 陈冠磊, 等. VLBI相时延及其在深空探测器测定轨中的应用[J]. 中国科学: 信息科学, 2014, 44(2): 221-230. doi: 10.1360/112013-1110.
    WU Yajun, LIU Qinghui, CHEN Guanlei, et al. VLBI phase delay and its application in orbit determination of spacecraft [J]. Science China Information Sciences, 2014, 44(2): 221-230. doi: 10.1360/112013-1110.
    ROSEN K H. Elementary Number Theory and Its Applications[M]. Englewood Cliffs, NJ, US, Addison Wesley, 2010: 155-200.
    LI Xiaowei and XIA Xianggen. A fast robust Chinese Remainder Theorem based phase unwrapping algorithm[J]. IEEE Signal Processing Letters, 2008, 15(2): 665-668. doi: 10.1109/LSP.2008.2002926.
    LI Xiaowei, LIANG Hong, and XIA Xianggen. A robust Chinese Remainder Theorem with its applications in frequency estimation from undersampled waveforms[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4314-4322. doi: 10.1109/TSP.2009.2025079.
    WANG Wenjie and XIA Xianggen. A close-form robust Chinese Reminder Theorem and its performance analysis[J]. IEEE Transactions on Signal Processing, 2010, 58(11): 5655-5666. doi: 10.1109/TSP.2010.2066974.
    WANG Chen, YIN Qinye, and WANG Wenjie. An efficient ranging method based on Chinese Remainder Theorem for RIPS measurement[J]. Science China Information Sciences, 2010, 53(6): 1233-1241. doi: 10.1007/s11432-101-0105-x.
    WANG Chen, YIN Qinye, and CHEN Hongyang. Robust Chinese Remainder Theorem ranging method based on dual-frequency measurements[J]. IEEE Transactions on Vehicular Technology, 2011, 60(8): 4094-4099. doi: 10.1109/ TVT.2011.2167690.
    XIAO Li, XIA Xianggen, and WANG Wenjie. Multi-stage robust Chinese Remainder Theorem[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4772-4785. doi: 10.1109/ TSP.2014.2339798.
    WANG Wenjie, LI Xiaoping, WANG Wei, et al. Maximum likelihood estimation based robust Chinese Remainder Theorem for real numbers and its fast algorithm[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3317-3331. doi: 10.1109/TSP.2015.2413378.
    LI Xiaoping, XIA Xianggen, WANG Wenjie, et al. A robust generalized Chinese Remainder Theorem for two integers[J]. IEEE Transactions on Information Theory, 2016, 62(12): 7491-7504. doi: 10.1109/TIT.2016.2614322.
    LI Xiaoping, WANG Wenjie, ZHANG Weile, et al. Phase- detection-based range estimation with robust Chinese Remainder Theorem[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 10132-10137. doi: 10.1109/TVT. 2016.2550083.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1622) PDF downloads(179) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return