Citation: | ZHAO Peiyan, OUYANG Xinxin, PENG Huafeng. A Phase Delay Estimation Algorithm of Frequency Hopping Signal Based on Chinese Reminder Theorem[J]. Journal of Electronics & Information Technology, 2018, 40(3): 656-662. doi: 10.11999/JEIT170544 |
CHAMPAGNE B, BEDARD S, and STEPHENNE A. Performance of time delay estimation in presence of room reverberation[J]. IEEE Transactions on, Speech and Audio Processing, 1996, 4(2): 148-152.
|
KNAPP C H and CARTER G C. The generalized correlation method for estimation of time delay[J]. IEEE Transactions on Acoust, Speech, and Signal Processing, 1976, 24(4): 320-327.
|
欧阳鑫信, 万群, 熊瑾煜, 等. 慢跳跳频信号的时差估计方法[J]. 现代雷达, 2016, 38(2): 19-22. doi: 10.16592/j.cnki.1004- 7859.2016.02.005.
|
OUYANG Xinxin, WAN Qun, XIONG Jinyu, et al. A new time delay estimate method of wide-band FH signal and precision analysis[J]. Modern Radar, 2016, 38(2): 19-22. doi: 10.16592/j.cnki.1004-7859.2016.02.005.
|
刘伟, 罗景青. 一种新的宽带跳频信号时延估计方法及精度分析[J]. 信号处理, 2010, 26(9): 1323-1328.
|
LIU Wei and LUO Jingqing. A new time delay estimate method of wide-band FH signal and precision analysis[J]. Signal Processing, 2010, 26(9): 1323-1328.
|
陆晨曦, 李宏宇, 年丰, 等. 一种应用于射频系统群时延测量的相关峰精化算法[J]. 电子与信息学报, 2013, 35(12): 2921-2926. doi: 10.3724/SP.J.1146.2013.00221.
|
LU Chenxi, LI Hongyu, NIAN Feng, et al. A correlation-peak fining algorithm for group delay measurement of radio frequency system[J]. Journal of Electronics Information Technology, 2013, 35(12): 2921-2926. doi: 10.3724/SP.J.1146. 2013.00221.
|
吴亚军, 刘庆会, 陈冠磊, 等. VLBI相时延及其在深空探测器测定轨中的应用[J]. 中国科学: 信息科学, 2014, 44(2): 221-230. doi: 10.1360/112013-1110.
|
WU Yajun, LIU Qinghui, CHEN Guanlei, et al. VLBI phase delay and its application in orbit determination of spacecraft [J]. Science China Information Sciences, 2014, 44(2): 221-230. doi: 10.1360/112013-1110.
|
ROSEN K H. Elementary Number Theory and Its Applications[M]. Englewood Cliffs, NJ, US, Addison Wesley, 2010: 155-200.
|
LI Xiaowei and XIA Xianggen. A fast robust Chinese Remainder Theorem based phase unwrapping algorithm[J]. IEEE Signal Processing Letters, 2008, 15(2): 665-668. doi: 10.1109/LSP.2008.2002926.
|
LI Xiaowei, LIANG Hong, and XIA Xianggen. A robust Chinese Remainder Theorem with its applications in frequency estimation from undersampled waveforms[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4314-4322. doi: 10.1109/TSP.2009.2025079.
|
WANG Wenjie and XIA Xianggen. A close-form robust Chinese Reminder Theorem and its performance analysis[J]. IEEE Transactions on Signal Processing, 2010, 58(11): 5655-5666. doi: 10.1109/TSP.2010.2066974.
|
WANG Chen, YIN Qinye, and WANG Wenjie. An efficient ranging method based on Chinese Remainder Theorem for RIPS measurement[J]. Science China Information Sciences, 2010, 53(6): 1233-1241. doi: 10.1007/s11432-101-0105-x.
|
WANG Chen, YIN Qinye, and CHEN Hongyang. Robust Chinese Remainder Theorem ranging method based on dual-frequency measurements[J]. IEEE Transactions on Vehicular Technology, 2011, 60(8): 4094-4099. doi: 10.1109/ TVT.2011.2167690.
|
XIAO Li, XIA Xianggen, and WANG Wenjie. Multi-stage robust Chinese Remainder Theorem[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4772-4785. doi: 10.1109/ TSP.2014.2339798.
|
WANG Wenjie, LI Xiaoping, WANG Wei, et al. Maximum likelihood estimation based robust Chinese Remainder Theorem for real numbers and its fast algorithm[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3317-3331. doi: 10.1109/TSP.2015.2413378.
|
LI Xiaoping, XIA Xianggen, WANG Wenjie, et al. A robust generalized Chinese Remainder Theorem for two integers[J]. IEEE Transactions on Information Theory, 2016, 62(12): 7491-7504. doi: 10.1109/TIT.2016.2614322.
|
LI Xiaoping, WANG Wenjie, ZHANG Weile, et al. Phase- detection-based range estimation with robust Chinese Remainder Theorem[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 10132-10137. doi: 10.1109/TVT. 2016.2550083.
|