Advanced Search
Volume 40 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
SHEN Zhijun, GAO Jing, WU Rigeng. Feedback and Reverse Transmission Mechanism Based Two-stage Switch Architecture[J]. Journal of Electronics & Information Technology, 2018, 40(3): 697-704. doi: 10.11999/JEIT170531
Citation: SHEN Zhijun, GAO Jing, WU Rigeng. Feedback and Reverse Transmission Mechanism Based Two-stage Switch Architecture[J]. Journal of Electronics & Information Technology, 2018, 40(3): 697-704. doi: 10.11999/JEIT170531

Feedback and Reverse Transmission Mechanism Based Two-stage Switch Architecture

doi: 10.11999/JEIT170531
Funds:

The Excellent Young Scientist Foundation of Inner Mongolia Agricultural University of China (2014XYQ-17), The National Natural Science Foundation of China (61650204, 61462070), The Doctoral Scientific Research Foundation of Inner Mongolia Agricultural University of China (BJ2013B-1)

  • Received Date: 2017-06-20
  • Rev Recd Date: 2017-10-27
  • Publish Date: 2018-03-19
  • In order to solve the problems arising from the 2-Staggered Symmetry connection pattern (2-SS) in Feedback mechanism based load balanced Two-stage Switch Architecture (FTSA), a Feedback and Reverse Transmission Mechanism based Two-stage Switch Architecture (FRTM-TSA) is proposed in this paper. A novel reverse transmission mechanism of crossbar is introduced so that any input port can obtain the scheduling results of its adjacent input port. Based on such scheduling results, the buffer status information of middle-ports that received one slot ahead can be corrected. The exact information obtained from preprocessing enables FRTM-TSA to avoid the cell-conflict and cell-disordering and thus make the re-sequencing buffers are no longer needed at the output ports. Theoretical analysis and simulation experiments show that FRTM-TSA can achieve a better delay performance with a simper switching fabric and process compared to existing schemes.
  • loading
  • XIAO Jie, YEUNG K L, and JAMIN S. Pipelined scheduler for unicast and multicast traffic in input-queued switches[C]. IEEE Global Communications Conference, Washington, D.C., USA, 2016: 1-6. doi: 10.1109/GLOCOM.2016.7842148.
    HU Bing, YEUNG K L, ZHOU Qian, et al. On iterative scheduling for input-queued switches with a speedup of 2-1/N[J]. IEEE/ACM Transactions on Networking, 2016, 24(6): 3565-3577. doi: 10.1109/TNET.2016.2541161.
    CERUTTI I, CORVERA J A, DUMLAO S M, et al. Simulation and FPGA-based implementation of iterative parallel schedulers for optical interconnection networks[J]. IEEE/OSA Journal of Optical Communications and Networking, 2017, 9(4): C76-C87. doi: 10.1364/JOCN.9. 000C76.
    CHANG C S, LEE D S, and JOU Y S. Load balanced Birkhoff-von Neumann switches[C]. IEEE Workshop on High Performance Switching and Routing, Dallas, TX, USA, 2001: 276-280. doi: 10.1109/HPSR.2001.923646.
    YE T, ZHANG J, LEE T T, et al. Deflection-compensated Birkhoff-von-Neumann switches[J]. IEEE/ACM Transactions on Networking, 2017, 25(2): 879-895. doi: 10.1109/TNET. 2016.2606766.
    DURKOVIC S and CICA Z. Birkhoff-von-Neumann switch with deflection based load balancing[C]. Telecommunications Forum, Belgrade, Republic of Serbia, 2016: 1-4. doi: 10.1109 /TELFOR.2016.7818731.
    KESLASSY I and MCKEOWN N. Maintaining packet order in two-stage switches[C]. IEEE International Conference on Computer Communications, New York, USA, 2002, 2: 1032-104. doi: 10.1109/INFCOM.2002.1019351.
    KESLASSY I, CHUANG S, YU K, et al. Scaling Internet routers using optics[C]. Proceedings of ACM SIGCOMM, Karlsruhe, Germany, 2003: 189-200. doi: 10.1145/863955. 863978.
    CHANG C S, LEE D S, SHIH Y J, et al. Mailbox switch: A scalable two-stage switch architecture for conflict resolution of ordered packets[J]. IEEE Transactions on Communications, 2008, 56(1): 136-149. doi: 10.1109/ TCOMM.2008.050427.
    YU C L, CHANG C S, and LEE D S. CR switch: A load- balanced switch with contention and reservation[J]. IEEE/ACM Transactions on Networking, 2009, 17(5): 1659-1671. doi: 10.1109/TNET.2008.2010624.
    SHEN Y , PANWAR S S, and CHAO H J. Design and performance analysis of a practical load-balanced switch[J]. IEEE Transactions on Communications, 2009, 57(8): 2420-2429. doi: 10.1109/TCOMM.2009.08.070477.
    HU Bing and YEUNG K L. Feedback-based scheduling for load-balanced two-stage switches[J]. IEEE/ACM Transactions on Networking, 2010, 18(4): 1077-1090. doi: 10.1109/TNET.2009.2037318.
    CAI Yan, WANG Xiaolin, GONG Weibo, et al. A study on the performance of a three-stage load-balancing switch[J]. IEEE/ACM Transactions on Networking, 2014, 22(1): 52-65. doi: 10.1109/TNET.2013.2244906.
    HE Chunzhi, HU Bing, and YEUNG K L. FTMS: An efficient multicast scheduling algorithm for feedback-based two-stage switch[C]. Global Communications Conference, Anaheim, California, USA, 2012: 2541-2546. doi: 10.1109/GLOCOM. 2012.6503499.
    DURKOVIC S and CICA Z. Birkhoff-von Neumann switch based on greedy scheduling[J]. IEEE Computer Architecture Letters, 2017, (99): 1-1. doi: 10.1109/LCA.2017.2707082.
    HUANG An and HU Bing. The optimal joint sequence design in the feedback-based two-stage switch[J]. Journal of Network Computer Applications, 2014, 45: 27-34. doi: 10.1016/ j.jnca.2014.06.011.
    LIN Y S and SHUNG C B. Quasi-pushout cell discarding[J]. IEEE Communication Letters, 1997, 1(5): 146-148. doi: 10.1109/4234.625041.
    申志军, 曾华燊, 高志江. 一种改进的反馈制两级交换结构FTSA-2-SS[J]. 电子与信息学报, 2011, 33(6): 1319-1325. doi: 10.3724/SP.J.1146.2010.01207.
    SHEN Zhijun, ZENG Huasheng, and GAO Zhijiang. An improved feedback-based two-stage switch architecture using 2-staggered symmetry connection pattern[J]. Journal of Electronics Information Technology, 2011, 33(6): 1319-1325. doi: 10.3724/SP.J.1146.2010.01207.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1969) PDF downloads(229) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return