Advanced Search
Volume 40 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
JIN Yan, ZHOU Lei, JI Hongbing. Parameter Estimation of Frequency-hopping Signals Based on Sparse Time-frequency Distribution[J]. Journal of Electronics & Information Technology, 2018, 40(3): 663-669. doi: 10.11999/JEIT170525
Citation: JIN Yan, ZHOU Lei, JI Hongbing. Parameter Estimation of Frequency-hopping Signals Based on Sparse Time-frequency Distribution[J]. Journal of Electronics & Information Technology, 2018, 40(3): 663-669. doi: 10.11999/JEIT170525

Parameter Estimation of Frequency-hopping Signals Based on Sparse Time-frequency Distribution

doi: 10.11999/JEIT170525
Funds:

The National Natural Science Foundation of China (61201286), The Natural Science Foundation of Shaanxi Province (2014JM8304)

  • Received Date: 2017-05-31
  • Rev Recd Date: 2017-11-06
  • Publish Date: 2018-03-19
  • In the case of parameter estimation of Frequency Hopping (FH) signal based on conventional time- frequency analysis, the suppression of cross-terms in Time-Frequency Distribution (TFD) by kernel function always leads to the decrease of time-frequency concentration, which is adverse to signal parameter extraction. To deal with this problem, a kind of Sparse TFD (STFD) based FH signals processing method is proposed. Based on the principle of Cohen's class of TFD and the ambiguity function characteristics of FH signals, a Rectangle-shaped Kernel Distribution (RKD) is constructed by choosing the rectangle function in ambiguity domain as its kernel function. RKD can suppress the cross-terms effectively but is followed by poor time-frequency resolution. In order to improve the performance of RKD, the TFD sparsity of FH signals is analyzed and utilized, and the optimal model of STFD is established by additional constraints to RKD under the Compressed Sensing (CS) frame. STFD can not only restrain cross-terms effectively, but also has a high time-frequency concentration. Simulation results show that proposed STFD based parameter estimation of FH signals has better performance compared with conventional ones.
  • loading
  • LEE J and YOON D. Improved FH acquisition scheme in partial-band noise jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 3070-3076. doi: 10.1109/TAES.2016.160071.
    TORRIERI D J. Mobile frequency-hopping CDMA systems[J]. IEEE Transactions on Communications, 2000, 48(8): 1318-1327. doi: 10.1109/26.864169.
    LIU F, MARCELLIN M W, GOODMAN N A, et al. Compressive sampling for detection of frequency-hopping spread spectrum signals[J]. IEEE Transactions on Signal Processing, 2016, 64(21): 5513-5524. doi: 10.1109/TSP.2016. 2597122.
    陈莹, 钟菲, 郭树旭. 非合作跳频信号参数的盲压缩感知估计[J]. 雷达学报, 2016, 5(5): 531-537. doi: 10.12000/JR15106.
    CHEN Ying, ZHONG Fei, and GUO Shuxu. Blind compressed sensing parameter estimation of non-cooperative frequency hopping signal[J]. Journal of Radars, 2016, 5(5): 531-537. doi: 10.12000/JR15106.
    钱怡, 马庆力, 路后兵. 基于改进SPWVD的DS/FH信号跳频参数估计方法[J]. 舰船电子对抗, 2015, 38(1): 50-53. doi: 10.16426/j.cnki.jcdzdk.2015.01.012.
    QIAN Yi, MA Qingli, and LU Houbing. Estimation method of frequency hopping parameter of DS/FH signal based on improved SPWVD[J]. Shipboard Electronic Countermeasure, 2015, 38(1): 50-53. doi: 10.16426/j.cnki.jcdzdk.2015.01.012.
    雷迎科, 钟子发, 吴彦华. 基于RSPWVD高速跳频信号跳周期估计算法[J]. 系统工程与电子技术, 2008, 30(5): 803-805. doi: 10.3321/j.issn:1001-506X.2008.05.006.
    LEI Yingke, ZHONG Zifa, and WU Yanhua. Hop duration estimation algorithm for high-speed frequency-hopping signals based on RSPWVD[J]. Systems Engineering and Electronics, 2008, 30(5): 803-805. doi: 10.3321/j.issn:1001- 506X.2008.05.006.
    金艳, 彭营, 姬红兵. 稳定分布噪声中基于最优核时频分析的跳频信号参数估计[J]. 系统工程与电子技术, 2015, 37(5): 985-991. doi: 10.3969/j.issn.1001-506X.2015.05.01.
    JIN Yan, PENG Ying, and JI Hongbing. Parameter estimation of FH signals based on optimal kernel time- frequency analysis in stable distribution noise[J]. Systems Engineering and Electronics, 2015, 37(5): 985-991. doi: 10.3969/j.issn.1001-506X.2015.05.01.
    沙志超, 黄知涛, 周一宇, 等. 基于时频稀疏性的跳频信号时频图修正方法[J]. 宇航学报, 2013, 34(6): 848-853. doi: 10.3873/j.issn.1000-1328.2013.06.015.
    SHA Zhichao, HUANG Zhitao, ZHOU Yiyu, et al. A modification method for time-frequency pattern of frequency- hopping signals based on timefrequency sparsity[J]. Joumal of Astmnautics, 2013, 34(6): 848-853. doi: 10.3873/j.issn. 1000-1328.2013.06.015.
    王磊, 姬红兵, 史亚. 基于模糊函数特征优化的雷达辐射源个体识别[J]. 红外与毫米波学报, 2011, 30(1): 74-79.
    WANG Lei, JI Hongbing, and SHI Ya. Feature optimization of ambiguity function for radar emitter recognition[J]. Journal of Infrared and Millimeter Waves, 2011, 30(1): 74-79.
    COHEN L. Time-frequency distributions-a review[J]. Proceedings of the IEEE, 1989, 77(7): 941-981. doi: 10.1109/ 5.30749.
    BOASHASH B. Time-frequency Signal Analysis and Processing: A Comprehensive Reference[M]. Salt Lake City, UT, USA, American Academic Press, 2015: 151-157.
    OBERLIN T, MEIGNEN S, and PERRIER V. Second-order synchrosqueezing transform or invertible reassignment? towards ideal time-frequency representations[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1335-1344. doi: 10.1109/TSP.2015.2391077.
    石光明, 刘丹华, 高大化, 等. 压缩感知理论及其研究进展[J]. 电子学报, 2009, 37(5): 1070-1081.
    SHI Guangming, LIU Danhua, GAO Dahua, et al. Advances in theory and application of Compressed Sensing[J]. Acta Electronica Sinica, 2009, 37(5): 1070-1081.
    BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
    CHEN S S, DONOHO D L, and SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129-159.
    CANDES E J and TAO T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. doi: 10.1109/TIT.2006.885507.
    ZHANG Z, XU Y, YANG J, et al. A survey of sparse representation: algorithms and applications[J]. IEEE Access, 2015, 3: 490-530. doi: 10.1109/ACCESS.2015.2430359.
    TONG C, LI J, and ZHANG W. Improved RIC bound for the recovery of sparse signals by orthogonal matching pursuit with noise[J]. Electronics Letters, 2016, 52(23): 1956-1958. doi: 10.1049/el.2016.1523.
    ZENG J, LIN S, and XU Z. Sparse regularization: convergence of iterative jumping thresholding algorithm[J]. IEEE Transactions on Signal Processing, 2016, 64(19): 5106-5118. doi: 10.1109/TSP.2016.2595499.
    FIGUEIREDO M A T, NOWAK R D, and WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597. doi: 10.1109/JSTSP.2007.910281.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1377) PDF downloads(229) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return