| Citation: | ZHANG Dongbo, CHEN Zhiqiang, YI Liangling, XU Haixia. Binarization Representation of Image Microstructure and the Application of Object Recognition[J]. Journal of Electronics & Information Technology, 2018, 40(3): 633-640. doi: 10.11999/JEIT170513 | 
 
	                | BAY H and TUYTELAARS T. SURF: Speeded up robust features[J]. Computer Vision  Image Understanding, 2006, 110(3): 404-417. doi:  10.1007/11744023_32. | 
| LOWE D G. Distinctive image features from scale- invariantkeypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664. 99615.94. | 
| MIKOLAJCZYK K and SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis  Machine Intelligence, 2005, 27(10): 1615-1630. doi:  10.1109/TPAMI.2005.188. | 
| ENGIN Tola, LEPETIT Vincent, and FUA Pascal. Daisy: An efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis  Machine Intelligence, 2010, 32(5): 815-830. doi: 10.1109/TPAMI.2009. 77. | 
| DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision  Pattern Recognition, San Francisco, USA, 2005: 886-893. doi:  10.1109/CVPR.2005.177. | 
| OJALA T, VALKEALAHTI K, OJA E, et al. Texture discrimination with multidimensional distributions of signed gray-level differences[J]. Pattern Recognition, 2001, 34(3): 727-739. doi:  10.1016/S0031-3203(00)00010-8. | 
| OJALA T, PIETIKAINEN M, and MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. doi: 10.1109/TPAMI. 2002.1017623. | 
| GUO Z H, ZHANG L, and ZHANG D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1657-1663. doi:  10.1109/TIP.2010.2044957. | 
| LIAO S, LAW M W K and CHUNG A C S. Dominant local binary patterns for texture classification[J]. IEEE Transactionson Image Processing, 2009, 18(5): 1107-1118. doi:  10.1109/TIP.2009.2015682. | 
| MAENPAA T, OJALA T, and PIETIKAINEN M. Robust texture classification by subsets of local binary patterns[C]. Proceedings of the 2000 International Conference on Pattern Recognition, Barcelona, Brazil, 2000: 947-950. doi: 10.1109/ ICPR.2000.903698. | 
| HAMDAN B and MOKHTAR K. Face recognition using Angular Radial Transform[J]. Journal of King Saud University-Computer and Information Sciences, 2016. doi:  10.1016/j.jksuci.2016.10.006. | 
| ZHU N B, TANG T, and TANG S. A sparse representation method based on kernel and virtual samples for face recognition[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(23): 6236-6241. doi: 10.1016/j.ijleo. 2013.05.017. | 
| ZHANG Y Y and ZHAO D. Adaptive convolutional neural network and its application in face recognition[J]. Neural Processing Letters, 2016, 43(2): 389-399. doi: 10.1007/ s11063-015-9420-y. | 
| HUANG P and LAI Z H. Adaptive linear discriminant regression classification for face recognition[J]. Digital Signal Processing, 2016, 55: 78-84. doi:  10.1016/j.dsp.2016.05.001. | 
| WANG S J and ZHOU C G. Face recognition using second- order discriminant tensor subspace analysis[J]. Neurocomputing, 2011, 74(12-13): 2142-2156. doi: 10.1016/ j.neucom.2011.01.024. | 
| WANG G Q and SHI N F. Embedded manifold-based kernel fisher discriminant analysis for face recognition[J]. Neural Processing Letters, 2016, 43(1): 1-16. doi: 10.1007/s11063- 014-9398-x. | 
| SINGH G and CHHABRA I. Integrating global zernike and local discriminative HOG features for face recognition[J]. International Journal of Image  Graphics, 2016, 16(4): 1650021-1650042. doi:  10.1142/S0219467816500212. | 
| SHAO H and CHEN S. Face recognition based on subset selection via metric learning on manifold[J]. Frontiers of Information Technology  Electronic Engineering, 2015, 16(12): 1046-1058. doi:  10.1631/FITEE.1500085. | 
| DING S F and GUO L L. Extreme learning machine with kernel model based on deep learning[J]. Neural Computing  Applications, 2017, 28(8): 1975-1984. doi: 10.1007/s00521- 015-2170-y. | 
| ZHOU Y and SUN S L. Manifold partition discriminant analysis[J]. IEEE Transactions on Cybernetics, 2017, 47(4): 830-840. doi:  10.1109/TCYB.2016.2529299. | 
| WU T F and LIN C J. Probability estimates for multi-class classification by pairwise coupling[J]. Journal of Machine Learning Research, 2004, 5(4): 975-1005. | 
| SCHMIDHUBER J, CIRES D, and MEIER U. Multi-column deep neural networks for image classification[C]. IEEE Conference on Computer Vision  Pattern Recognition, Rod Aprovendis, USA, 2012: 3642-3649. doi: 10.1109/CVPR.2012. 6248110. | 
| ZHANG Z M and LADICKY L. Learning anchor planes for Classification[C]. Advances in Neural Information Processing Systems, Granada, Spain, December, 2011: 1611-1619. | 
| EBRAHIMZADEH R and JAMPOUR M. Efficient handwritten digit recognition based on histogram of oriented gradients and SVM[J]. Annals of the Rheumatic Diseases, 2014, 104(9):10-13. doi:  10.5120/18229-9167. | 
