Advanced Search
Volume 40 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
ZHANG Dongbo, CHEN Zhiqiang, YI Liangling, XU Haixia. Binarization Representation of Image Microstructure and the Application of Object Recognition[J]. Journal of Electronics & Information Technology, 2018, 40(3): 633-640. doi: 10.11999/JEIT170513
Citation: ZHANG Dongbo, CHEN Zhiqiang, YI Liangling, XU Haixia. Binarization Representation of Image Microstructure and the Application of Object Recognition[J]. Journal of Electronics & Information Technology, 2018, 40(3): 633-640. doi: 10.11999/JEIT170513

Binarization Representation of Image Microstructure and the Application of Object Recognition

doi: 10.11999/JEIT170513
Funds:

The National Natural Science Foundation of China (61602397), The Natural Science Foundation of Hunan Province (2017JJ2251, 2017JJ3315), The Key Discipline Construction Project of Hunan Province

  • Received Date: 2017-05-27
  • Rev Recd Date: 2017-10-19
  • Publish Date: 2018-03-19
  • A novel expression based on Binary Image Microstructure Pattern (BIMP) and Gray Image Micorstructure Maximum Response Pattern (GIMMRP) coding method is proposed. Through the binary coding of the 33 neighborhood structure of the image, the description of the microstructure of the image is obtained, and then selecting the important execution mode subset and the pooling operation to realize the representation of the whole image. In order to verify the effectiveness of the algorithm, experiments are carried out on the ORL, YALE two human face data set, MNIST, USPS two handwritten digital public data sets, as well as non-public vehicle standard data set. The results show the method has strong discriminative power and robustness and can achieve better performance than many of the latest algorithms.
  • loading
  • BAY H and TUYTELAARS T. SURF: Speeded up robust features[J]. Computer Vision Image Understanding, 2006, 110(3): 404-417. doi: 10.1007/11744023_32.
    LOWE D G. Distinctive image features from scale- invariantkeypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664. 99615.94.
    MIKOLAJCZYK K and SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2005, 27(10): 1615-1630. doi: 10.1109/TPAMI.2005.188.
    ENGIN Tola, LEPETIT Vincent, and FUA Pascal. Daisy: An efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2010, 32(5): 815-830. doi: 10.1109/TPAMI.2009. 77.
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision Pattern Recognition, San Francisco, USA, 2005: 886-893. doi: 10.1109/CVPR.2005.177.
    OJALA T, VALKEALAHTI K, OJA E, et al. Texture discrimination with multidimensional distributions of signed gray-level differences[J]. Pattern Recognition, 2001, 34(3): 727-739. doi: 10.1016/S0031-3203(00)00010-8.
    OJALA T, PIETIKAINEN M, and MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. doi: 10.1109/TPAMI. 2002.1017623.
    GUO Z H, ZHANG L, and ZHANG D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1657-1663. doi: 10.1109/TIP.2010.2044957.
    LIAO S, LAW M W K and CHUNG A C S. Dominant local binary patterns for texture classification[J]. IEEE Transactionson Image Processing, 2009, 18(5): 1107-1118. doi: 10.1109/TIP.2009.2015682.
    MAENPAA T, OJALA T, and PIETIKAINEN M. Robust texture classification by subsets of local binary patterns[C]. Proceedings of the 2000 International Conference on Pattern Recognition, Barcelona, Brazil, 2000: 947-950. doi: 10.1109/ ICPR.2000.903698.
    HAMDAN B and MOKHTAR K. Face recognition using Angular Radial Transform[J]. Journal of King Saud University-Computer and Information Sciences, 2016. doi: 10.1016/j.jksuci.2016.10.006.
    ZHU N B, TANG T, and TANG S. A sparse representation method based on kernel and virtual samples for face recognition[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(23): 6236-6241. doi: 10.1016/j.ijleo. 2013.05.017.
    ZHANG Y Y and ZHAO D. Adaptive convolutional neural network and its application in face recognition[J]. Neural Processing Letters, 2016, 43(2): 389-399. doi: 10.1007/ s11063-015-9420-y.
    HUANG P and LAI Z H. Adaptive linear discriminant regression classification for face recognition[J]. Digital Signal Processing, 2016, 55: 78-84. doi: 10.1016/j.dsp.2016.05.001.
    WANG S J and ZHOU C G. Face recognition using second- order discriminant tensor subspace analysis[J]. Neurocomputing, 2011, 74(12-13): 2142-2156. doi: 10.1016/ j.neucom.2011.01.024.
    WANG G Q and SHI N F. Embedded manifold-based kernel fisher discriminant analysis for face recognition[J]. Neural Processing Letters, 2016, 43(1): 1-16. doi: 10.1007/s11063- 014-9398-x.
    SINGH G and CHHABRA I. Integrating global zernike and local discriminative HOG features for face recognition[J]. International Journal of Image Graphics, 2016, 16(4): 1650021-1650042. doi: 10.1142/S0219467816500212.
    SHAO H and CHEN S. Face recognition based on subset selection via metric learning on manifold[J]. Frontiers of Information Technology Electronic Engineering, 2015, 16(12): 1046-1058. doi: 10.1631/FITEE.1500085.
    DING S F and GUO L L. Extreme learning machine with kernel model based on deep learning[J]. Neural Computing Applications, 2017, 28(8): 1975-1984. doi: 10.1007/s00521- 015-2170-y.
    ZHOU Y and SUN S L. Manifold partition discriminant analysis[J]. IEEE Transactions on Cybernetics, 2017, 47(4): 830-840. doi: 10.1109/TCYB.2016.2529299.
    WU T F and LIN C J. Probability estimates for multi-class classification by pairwise coupling[J]. Journal of Machine Learning Research, 2004, 5(4): 975-1005.
    SCHMIDHUBER J, CIRES D, and MEIER U. Multi-column deep neural networks for image classification[C]. IEEE Conference on Computer Vision Pattern Recognition, Rod Aprovendis, USA, 2012: 3642-3649. doi: 10.1109/CVPR.2012. 6248110.
    ZHANG Z M and LADICKY L. Learning anchor planes for Classification[C]. Advances in Neural Information Processing Systems, Granada, Spain, December, 2011: 1611-1619.
    EBRAHIMZADEH R and JAMPOUR M. Efficient handwritten digit recognition based on histogram of oriented gradients and SVM[J]. Annals of the Rheumatic Diseases, 2014, 104(9):10-13. doi: 10.5120/18229-9167.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1269) PDF downloads(316) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return