Advanced Search
Volume 40 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
WANG Zhonggen, TANG Xiaowan, WANG Qiang. Fast Calculation of Wide-angel RCS of Objects Using Improved Primary Characteristic Basis Functions[J]. Journal of Electronics & Information Technology, 2018, 40(3): 573-578. doi: 10.11999/JEIT170499
Citation: WANG Zhonggen, TANG Xiaowan, WANG Qiang. Fast Calculation of Wide-angel RCS of Objects Using Improved Primary Characteristic Basis Functions[J]. Journal of Electronics & Information Technology, 2018, 40(3): 573-578. doi: 10.11999/JEIT170499

Fast Calculation of Wide-angel RCS of Objects Using Improved Primary Characteristic Basis Functions

doi: 10.11999/JEIT170499
Funds:

The National Natural Science Foundation of China (61401003), The Natural Science Foundation of Anhui Provincial Education Department (KJ2016A669)

  • Received Date: 2017-05-24
  • Rev Recd Date: 2017-10-30
  • Publish Date: 2018-03-19
  • Characteristic basis function method is one of the effective methods to analyze wide-angle electromagnetic scattering characteristics of objects. However, the incident wave excitations used to construct the Characteristic Basis Functions (CBFs) contain large amount of redundant information, which greatly reduces the construction efficiency of the CBFs. Moreover, when the complex target is analyzed, the calculation accuracy can not be significantly improved only using the Primary CBFs (PCBFs) when the number of excitations is increased. To solve these problems, an improved CBFs construction method is presented in this paper. Firstly, the Singular Value Decomposition (SVD) technique is used to effectively compress the excitation matrix to remove the redundant information, which in turn reduces the number of solving the matrix equation. Then, the mutual interaction among subdomains is fully considered, the Improved PCBFs (IPCBFs) are obtained by merging the PCBFs and the Secondary CBFs (SCBFs). The numerical results show that the proposed method has higher computational efficiency and computational accuracy than the traditional method.
  • loading
  • HARRINGTON R F. Field Computation by Moment Method[M]. New York: Macmillan, 1968: 22-57.
    SONG J M, LU C C, and CHEW W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(10): 1488-1493. doi: 10.1109/8.633855.
    陈新蕾, 邓小乔, 李茁, 等. 金属介质混合目标散射分析的快速偶极子法[J]. 电子与信息学报, 2011, 33(11): 2790-2794. doi: 10.3724/SP.J.1146.2011.00398.
    CHEN Xinlei, DENG Xiaoqiao, LI Zhuo, et al. Electromagnetic scattering by mixed conducting and dielectric objects analysis using fast dipole method[J]. Journal of Electronics Information Technology, 2011, 33(11): 2790-2794. doi: 10.3724/SP.J.1146.2011.00398.
    王兴, 龚书喜, 关莹, 等. AIM 结合渐近波形估计技术快速分析目标宽带电磁散射特性[J]. 电子与信息学报, 2011, 33(8): 1975-1980. doi: 10.3724/SP.J.1146.2010.01404.
    WANG Xing, GONG Shuxi, GUAN Ying, et al. Fast analysis of electromagnetic scattering of targets over a broad frequency band using AIM with asymptotic waveform evaluation[J]. Journal of Electronics Information Technology, 2011, 33(8): 1975-1980. doi: 10.3724/SP.J.1146. 2010.01404.
    ZHAO K, VOUVAKIS M N, and LEE J F. The adaptive cross approximation algorithm for accelerated MoM computations of EMC problems[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 763-773. doi: 10.1109/TEMC.2005.857898.
    LI L W, HE X J, WANG Y, et al. Electromagnetic scattering of the carbon nanotubes excited by an electric line source[J]. Chinese Physic B, 2012, 21(1): 014212-1-014212-5. doi: 10.1088/1674-1056/21/1/014212.
    LIU Z, CHEN R, CHEN J, et al. Using adaptive cross approximation for efficient calculation of monostatic scattering with multiple incident angles[J]. Applied Computational Electromagnetics Society Journal, 2011, 26(4): 325-333.
    陈明生, 王时文, 马韬, 等. 基于压缩感知的目标频空电磁散射特性快速分析[J]. 物理学报, 2014, 63(17): 170301-1-170301-5. doi: 10.7498/aps.63.170301.
    CHEN Mingsheng, WANG Shiwen, MA Tao, et al. Fast analysis of electromagnetic scattering characteristics in spatial and frequency domains based on compressive sensing [J]. Acta Physica Sinica, 2014, 63(17): 170301-1-170301-5. doi: 10.7498/aps.63.170301.
    曹欣远, 陈明生, 孔勐, 等. 自适应交叉近似结合压缩感知快速求解电大目标宽角度电磁散射问题[J]. 中国科技大学学报, 2015, 45(4): 302-307. doi: 10.3969/j.issn.0253-2778.2015.04. 007.
    CAO Xinyuan, CHEN Mingsheng, KONG Meng, et al. Application of adaptive cross approximation combined with compressed sensing to fast solution of electromagnetic scattering problems of electrically large objects over wide angles[J]. Journal of University of Science and Technology of China, 2015, 45(4): 302-307. doi: 10.3969/j.issn.0253-2778. 2015.04.007.
    LUCENTE E, MONORCHIO A, and MITTRA R. An iteration-free MOM approach based on excitation independent characteristic basis function for solving large multiscale electromagnetic scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(4): 999-1007. doi: 10.1109/TAP.2008.919166.
    侯兆国, 王超, 董纯柱, 等. 基于PO和EEC的特征基函数快速构造方法[J]. 系统工程与电子技术, 2011, 33(7): 1458-1461. doi: 10.3969/j.issn.1001-506X.2011.07.06.
    HOU Zhaoguo, WANG Chao, DONG Chunzhu, et al. Fast characteristic basis functions construction procedure based on the PO and EEC method[J]. Systems Engineering and Electronics, 2011, 33(7): 1458-1461. doi: 10.3969/j.issn.1001- 506X.2011.07.06.
    DING J, LI J F, and ZHANG T. Fast direct solution of characteristic basis function method using ACA-based LU decomposition[J]. IEICE Electronics Express, 2016, 13(7): 1-9. doi: 10.1587/elex.13.20160176.
    FENNI I, ROUSSEL H, DARCES M, et al. Efficiency enhancement of the characteristic basis function method form modeling forest scattering using the adaptive cross approximation algorithm[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4539-4544. doi: 10.1109/TAP. 2016.2593872.
    CHEN X L,GU C Q, LI Z, et al. Accelerated direct solution of electromagnetic scattering via characteristic basis function method with sherman-morrison-woodbury formula-based algorithm[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4482-4486. doi: 10.1109/TAP.2016. 2587743.
    SU Y, LI C, MITTRA R, et al. Multi-level characteristic basis function method for analysis of scattering from objects embedded in multi-layered media[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(1): 47-56. doi: 10.1080/09205071.2016.1250678.
    KONNO K and CHEN Q. The numerical analysis of an antenna near a dielectric object using the higher-order characteristic basis function method combined with a volume integral equation[J]. IEICE Transactions on Communications, 2014, E97-B(10): 2066-2073. doi: 10.1587/transcom.E97.B. 2066.
    WANG Z G, SUN Y F, and WANG G H. Analysis of electromagnetic scattering from perfect electric conducting targets using improved characteristic basis function method and fast dipole method[J]. Journal of Electromagnetic Waves and Applications, 2014, 28(7): 893-902. doi: 10.1080/ 09205071.2014.895425.
    TANAKA T, INASAWA Y, NISHIOKA Y, et al. Improved primary characteristic basic function method for monostatic radar cross section analysis of specific coordinate plane[J]. IEICE Transactions on Electronics, 2016, E99-C(1): 28-35. doi: 10.1587/transele.E99.C.28.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1094) PDF downloads(178) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return