Citation: | HAN Zheng, XIAO Zhitao. Weakly Supervised Semantic Segmentation Based on Semantic Texton Forest and Saliency Prior[J]. Journal of Electronics & Information Technology, 2018, 40(3): 610-617. doi: 10.11999/JEIT170472 |
KOHLI Pushmeet, LADICKY L, and TORR P H S. Robust higher order potentials for enforcing label consistency[J]. International Journal of Computer Vision, 2009, 82(3): 302-324. doi: 10.1007/s11263-008-0202-0.
|
ZHANG L, SONG M, LIU Z, et al. Probabilistic graphlet cut: Exploiting spatial structure cue for weakly supervised image segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013: 1908-1915. doi: 10.1109/CVPR.2013.249.
|
ZHANG Ke, ZHANG Wei, ZHENG Yingbin, et al. Sparse reconstruction for weakly supervised semantic segmentation [C]. International Joint Conference on Artificial Intelligence, Beijing, China, 2013: 1889-1895.
|
VEZHNEVETS A, FERRARIV, and BUHMANN J M. Weakly supervised structured output learning for semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 845-852. doi: 10.1109/CVPR.2012.6247757.
|
VEZHNEVETS A and BUHMANN J M. Towards weakly supervised semantic segmentation by means of multiple instance and multitask learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010: 3249-3256. doi: 10.1109/CVPR.2010. 5540060.
|
SHOTTON Jamie, JOHNSON Matthew, and CIPOLLA Roberto. Semantic texton forests for image categorization and segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008: 1-8. doi: 10.1109/CVPR.2008.4587503.
|
WEI Yunchao, LIANG Xiaodan, CHEN Yunpeng, et al. STC: a simple to complex framework for weakly-supervised semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(11): 2314-2320. doi: 10.1109/TPAMI.2016.2636150.
|
VEZHNEVETS A, FERRARI V, and BUHMANN J. M. Weakly supervised semantic segmentation with a multi-image model[C]. IEEE International Conference on Computer Vision, Washington, DC, USA, 2011: 643-650. doi: 10.1109/ ICCV.2011.6126299.
|
ZENG Zinan, XIAO Shijie, JIA Kui, et al. Learning by associating ambiguously labeled images[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013: 708-715. doi: 10.1109/CVPR.2013.97.
|
VEZHNEVETS A, BUHMANN J M, and FERRARI V. Active learning for semantic segmentation with expected change[C]. IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 2012: 3162-3169. doi: 10.1109/CVPR.2012.6248050.
|
YING P, LIU J, and LU H. Dictionary learning based superpixels clustering for weakly-supervised semantic segmentation[C]. IEEE International Conference on Image Processing, Quebec City, QC, Canada, 2015: 4258-4262. doi: 10.1109/ICIP.2015.7351609.
|
OQUAB Maxime, BOTTOU Leon, LAPTEV Ivan, et al. Is object localization for free? Weakly-supervised learning with convolutional neural networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 685-694. doi: 10.1109/CVPR.2015.7298668.
|
PAPANDREOU George, CHEN Liang-chieh, MURPHY Kevin, et al. Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1742-1750, doi: 10.1109/ICCV.2015. 203.
|
PINHEIRO Pedro O and COLLOBERT Ronan. From image- level to pixel-level labeling with Convolutional Networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, 2015: 1713-1721. doi: 10.1109/CVPR.2015.7298780.
|
XU Jia, SCHWING A G, and URTASUN R. Tell me what you see and i will show you where it is[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 3190-3197. doi: 10.1109/CVPR.2014.408.
|
CABRAL R, TORRE F D L, COSTEIRA J P, et al. Matrix completion for weakly-supervised multi-label image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1): 121-135. doi: 10.1109/ TPAMI.2014.2343234.
|
KOLMOGOROV Vladimir and ZABIH R. What energy functions can be minimized via graph cuts?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159. doi: 10.1109/TPAMI.2004.1262177.
|
GEURTS Pierre, DAMIEN Ernst, and LOUIS Wehenkel. Extremely randomized trees[J]. Machine Learning, 2006, 63(1): 3-42. doi: 10.1007/s10994-006-6226-1.
|
JIANG Huaizu, WANG Jingdong, YUAN Zejian, et al. Salient object detection: A discriminative regional feature integration approach[J]. International Journal of Computer Vision, 2016, 9(4): 1-18. doi: 10.1007/s11263-016-0977-3.
|
GOFERMAN Stas, ZELNIK-MANOR Lihi, and TAL Ayellet. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(10): 1915-1926. doi: 10.1109/TPAMI.2011.272.
|
SHOTTON Jamie, WINN John, ROTHER Carsten, et al. Texton Boost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation[C]. European Conference on Computer Vision, Graz, Austria, 2006: 1-15. doi: 10.1007/11744023-1.
|
LEVINSHTEIN A, STERE A, KUTULAKOS K N, et al. TurboPixels: fast superpixels using geometric flows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2290-2297. doi: 10.1109/TPAMI.2009.96.
|
LADICKY L, RUSSELL C, KOHLI P, et al. Associative hierarchical random fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1056-1077. doi: 10.1109/TPAMI.2013.165.
|
VERBEEK J and TRIGGS B. Region classification with markov field aspect models[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007: 1-8. doi: 10.1109/CVPR.2007.383098.
|