Citation: | HUANG Xiang, TANG Shiyang, ZHANG Linrang, GU Yabin. A Fast Algorithm of LFM Signal Detection and Parameter Estimation Based on Efficient FrFT[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2905-2911. doi: 10.11999/JEIT170467 |
CZARNECKI K and MOSZYNSLI M. A novel method of local chirp-rate estimation of LFM chirp signals in the time-frequency domain[C]. International Conference on Telecommunications and Signal Processing, Italy, Rome, 2013: 704-708. doi: 10.1109/TSP.2013.6614028.
|
SAHA S and KAY A M. Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 224-230. doi: 10.1109/78.978378.
|
李秀坤, 吴玉双. 多分量线性调频信号的Wigner-Ville分布交叉项去除[J]. 电子学报, 2017, 45(2): 315-320. doi: 10.3969/ j.issn.0372-2112.2017.02.008.
|
LI Xiukun and WU Yushuang. Cross-term removal of Wigner-Ville distribution for multi-component LFM signals [J]. Acta Electronica Sinica, 2017, 45(2): 315-320. doi: 10.3969/j.issn. 0372-2112.2017.02.008.
|
BOASHASH B and OUELHA S. An improved design of high-resolution quadratic time-frequency distribution for the analysis of nonstationary multicomponent signal using directional compact kernels[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2701-2713. doi: 10.1109/TSP.2017. 2669899.
|
WOOD J C and BARRY D T. Radon transformation of time-frequency distributions for analysis of multicomponent signals[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3166-3177. doi: 10.1109/78.330375.
|
BARBAROSSA S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1511-1515. doi: 10.1109/78.388866.
|
刘颖, 陈殿仁, 陈磊, 等. 基于周期Choi-Williams Hough变换的线性调频连续波信号参数估计算法[J].电子信息学报, 2015, 37(5): 1136-1140. doi: 10.11999/JEIT140876.
|
LIU Ying, CHEN Dianren, CHEN Lei et al. Parameter estimation algorithm of linear frequency modulated continuous wave signals based on period Choi-Williams Hough transform[J]. Journal of Electronics Information Technology, 2015, 37(5): 1136-1140. doi: 10.11999/JEIT 140876.
|
WANG M, CHAN A K, and CHUI C K. Linear frequency- modulated signal detection using Radon-ambiguity transform [J]. IEEE Transactions on Signal Processing, 1998, 43(6): 571-586. doi: 10.1109/78.661326.
|
齐林, 陶然, 周思永, 等. 基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J]. 中国科学E辑, 2003, 33(8): 750-759. doi: 10.3321/j.issn:1006-9275.2003.08.008.
|
QI Lin, TAO Ran, ZHOU Siyong, et al. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform[J]. Science in China (Series E), 2003, 33(8): 750-759. doi: 10.3321/j.issn:1006- 9275.2003.08.008.
|
陈艳丽, 郭良浩, 宫在晓. 简明分数阶傅里叶变换及其对线性调频信号的检测和参数估计[J]. 声学学报, 2015, 40(6): 761-771. doi: 10.15949/j.cnki.0371-0025.2015.06.001.
|
CHEN Yanli, GUO Lianghao, and GONG Zaixiao. The concise fractional Fourier transform and its application in detection and parameter estimation of the linear frequency- modulated signal[J]. Acta Acustica, 2015, 40(6): 761-771. doi: 10.15949/j.cnki.0371-0025.2015.06.001.
|
ZHANG Xuepan, LIAO Guisheng, ZHU Shengqi, et al. Efficient compressed sensing method for moving targets imaging by exploiting the geometry information of the defocused results[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 517-521. doi: 10.1109/LGRS.2014. 2349035.
|
ALMEIDA L B. The fractional Fourier transform and time- frequency representations[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3084-3091. doi: 10.1109/78.330368.
|
赵兴浩, 邓兵, 陶然. 分数阶傅里叶变换数值计算中的量纲归一化[J]. 北京理工大学学报, 2005, 25(4): 360-364. doi: 10.3969/j.issn.1001-0645.2005.04.019.
|
ZHAO Xinghao, DENG Bing, and TAO Ran. Dimensional normalization in the digital computation of the fractional Fourier transform[J]. Transactions of Beijing Institute of Technology, 2005, 25(4): 360-364. doi: 10.3969/j.issn.1001- 0645.2005.04.019.
|
张雯雯, 刘黎平. 一种新的相位编码信号识别方法[J]. 哈尔滨工程大学学报, 2009, 30(10): 1204-1208. doi: 10.3969/ j.issn.1006-7043.2009.10.023.
|
ZHANG Wenwen and LIU Liping. A new recognition method for phase-shift keying signals[J]. Journal of Harbin Engineering University, 2009, 30(10): 1204-1208. doi: 10.3969 /j.issn.1006-7043.2009.10.023.
|