Advanced Search
Volume 40 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
BI Xiaojun, WANG Chao. A Many-objective Evolutionary Algorithm Based on Angle Penalized Distance[J]. Journal of Electronics & Information Technology, 2018, 40(2): 314-322. doi: 10.11999/JEIT170454
Citation: BI Xiaojun, WANG Chao. A Many-objective Evolutionary Algorithm Based on Angle Penalized Distance[J]. Journal of Electronics & Information Technology, 2018, 40(2): 314-322. doi: 10.11999/JEIT170454

A Many-objective Evolutionary Algorithm Based on Angle Penalized Distance

doi: 10.11999/JEIT170454
Funds:

The National Natural Science Foundation of China (61175126), The Fundamental Research Funds for the Central Universities (HEUCFP201709)

  • Received Date: 2017-05-12
  • Rev Recd Date: 2017-09-22
  • Publish Date: 2018-02-19
  • In order to balance between convergence and distribution in Multi-Objective Evolutionary Algorithms (MOEAs), a Many-Objective Evolutionary Algorithm based on Angle Penalized Distance (MaOEA-APD) is proposed. Firstly, considering the importance of convergence and diversity in the different stages of the evolutionary process, an angle penalized distance is constructed to dynamically balance between them. Then, the environmental selection based on removing the worse individual is designed to maintain the distribution and improve the convergence. Finally, the mating selection is designed based on the principle of the environmental selection. Both are complement and coordinated to each other for improving the evolutionary efficiency of the algorithm. Compared with three state-of-the-art many-objective evolutionary algorithms (MaOEAs), the experimental results on WFG test suite show that MaOEA-APD has more advantage than other algorithms in terms of the overall performance.
  • loading
  • 巩敦卫, 季新芳, 孙晓燕. 基于集合的高维多目标优化问题的进化算法[J]. 电子学报, 2014, 42(1): 77-83. doi: 10.3969/ j.issn.0372-2112.2014.01.012.
    GONG Dunwei, JI Xinfang, and SUN Xiaoyan. Solving many-objective optimization problems using set-based evolutionary algorithms[J]. Acta Electronica Sinica, 2014, 42(1): 77-83. doi: 10.3969/j.issn.0372-2112.2014.01.012.
    陈小红, 李霞, 王娜. 高维多目标优化中基于稀疏特征选择的目标降维方法[J]. 电子学报, 2015, 43(7): 1300-1307. doi: 10.3969/j.issn.0372-2112.2015.07.008.
    CHEN Xiaohong, LI Xia, and WANG Na. Objective reduction with sparse feature selection for many objective optimization problem[J]. Acta Electronica Sinica, 2015, 43(7): 1300-1307. doi: 10.3969/j.issn.0372-2112.2015.07.008.
    HUGHES E J. Radar waveform optimisation as a many- objective application benchmark[C]. International Conference on Evolutionary Multi-Criterion Optimization, Springer-Verlag, 2007: 700-714. doi: 10.1007/978-3-540- 70928-2_53.
    REED P M and KOLLAT J B. Save now, pay later? Multi- period many-objective groundwater monitoring design given systematic model errors and uncertainty[J]. Advances in Water Resources, 2012, 35: 55-68. doi: 10.1016/j.advwatres. 2011.10.011.
    LYGOE R J, CARY M, and FLEMING P J. A Real-World Application Of A Many-Objective Optimisation Complexity Reduction Process[M]. Evolutionary Multi-Criterion Optimization, Springer Berlin Heidelberg, 2013: 641-655.
    孔维健, 丁进良, 柴天佑. 高维多目标进化算法研究综述[J]. 控制与决策, 2010, 25(3): 321-326. doi: 10.13195/j.cd.2010. 03.4.kongwj.008.
    KONG Weijian, DING Jinliang, and CHAI Tianyou. Survey on large-dimensional multi-objective evolutionary algorithms [J]. Control Decision, 2010, 25(3): 321-326. doi: 10.13195 /j.cd.2010.03.4.kongwj.008.
    LI Ke, DEB K, ZHANG Q, et al. An evolutionary many- objective optimization algorithm based on dominance and decomposition[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(5): 694-716. doi: 10.1109/TEVC.2014. 2373386.
    CHENG Jixiang, YEN G G, and ZHANG G. A many- objective evolutionary algorithm with enhanced mating and environmental selections[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(4): 592-605. doi: 10.1109 /TEVC.2015.2424921.
    ZHANG Xingyi, TIAN Ye, and JIN Yaochu. A knee point-driven evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(6): 761-776. doi: 10.1109/TEVC. 2014.2378512.
    陈振兴, 严宣辉, 吴坤安, 等. 融合张角拥挤控制策略的高维多目标优化[J]. 自动化学报, 2015, 41(6): 1145-1158. doi: 10.16383/j.aas.2015.c140555.
    CHEN Zhenxing, YAN Xuanhui, WU Kunan, et al. Many- objective optimization integrating open angle based congestion control strategy[J]. Acta Automatica Sinica, 2015, 41(6): 1145-1158. doi: 10.16383/j.aas.2015.c140555.
    CHENG Ran, JIN Yaochu, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791. doi: 10.1109/TEVC.2016. 2519378.
    HE Zhenan and YEN G G. Many-objective evolutionary algorithms based on coordinated selection strategy[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(2): 220-233. doi: 10.1109/TEVC.2016.2598687.
    XIANG Yi, ZHOU Yuren, LI Miqing, et al. A vector angle- based evolutionary algorithm for unconstrained many- objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(1): 131-152. doi: 10.1109 /TEVC.2016.2587808.
    LI Miqing, YANG Shengxiang, and LIU Xiaohui. Bi-goal evolution for many-objective optimization problems[J]. Artificial Intelligence, 2015, 228: 45-65.
    郑金华, 申瑞珉, 李密青, 等. 一种基于信息分离的高维多目标进化算法[J]. 软件学报, 2015, 26(5): 1013-1036. doi: 10.13328/j.cnki.jos.004676.
    ZHENG Jinhua, SHEN Ruimin, LI Miqing, et al. Evolutionary algorithm based on information separation for many-objective optimization[J]. Journal of Software, 2015, 26(5): 1013-1036. doi: 10.13328/j.cnki.jos.004676.
    DEB K and JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. doi: 10.1109/TEVC.2013. 2281535.
    HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477-506. doi: 10.1109/TEVC.2005.861417.
    ZITZLER E, THIELE L, LAUMANNS M, et al. Performance assessment of multiobjective optimizers: An analysis and review[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 117-132. doi: 10.1109/TEVC.2003.810758.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1691) PDF downloads(284) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return