Advanced Search
Volume 39 Issue 12
Dec.  2017
Turn off MathJax
Article Contents
CHEN Qiushi, YANG Qiang, DONG Yingning, YAO Di, YE Lei, DENG Weibo. Off-the-grid Targets Resolution of Synthetic Bandwidth High Frequency Radar Based on Matrix Completion[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2874-2880. doi: 10.11999/JEIT170449
Citation: CHEN Qiushi, YANG Qiang, DONG Yingning, YAO Di, YE Lei, DENG Weibo. Off-the-grid Targets Resolution of Synthetic Bandwidth High Frequency Radar Based on Matrix Completion[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2874-2880. doi: 10.11999/JEIT170449

Off-the-grid Targets Resolution of Synthetic Bandwidth High Frequency Radar Based on Matrix Completion

doi: 10.11999/JEIT170449
Funds:

The National Natural Science Foundation of China (61171182, 61032011, 61171180, 61571159), The Fundamental Research Funds for the Central Universities (HIT. MKSTISP.201613, HIT.MKSTISP.201626)

  • Received Date: 2017-05-12
  • Rev Recd Date: 2017-09-19
  • Publish Date: 2017-12-19
  • High Frequency Radar (HFR) works in the crowded high-frequency band (3~30 MHz) with limited continuous bandwidth. It affects the ability to distinguish the near targets. Therefore, this paper introduces a kind of synthesis bandwidth signal with a proposed method for estimating the target parameters in 1-D and 2-D based on Matrix Completion (MC). They are respectively named Matrix Completion Estimation for One Dimension (MCE-1D) and Matrix Completion Estimation for Two Dimensions (MCE-2D). The incomplete sampling set can be considered as low rank matrix, by constructing the two-fold Hankel matrix, this problem is transformed into a Semi-Definite Programming (SDP) problem. Using this new method to the high frequency radar, then the accurate estimation of the target position in the scene can be obtained in the background of the discontinuous spectrum, which solves the problem of base mismatch for off-the-grid targets in the traditional grid estimate method. It also has higher resolution and anti-noise performance. The simulation results demonstrate the effectiveness of this method.
  • loading
  • YAN H, XU J, and ZHANG X. Compressed sensing radar imaging of off-grid sparse targets[C]. IEEE Radar Conference, Arlington, VA, USA, 2015: 0690-0693. doi: 10.1109/RADAR. 2015.7131084.
    LEONG H W and DAWE B. Channel availability for east coast high frequency surface wave radar systems [R]. Defence Research Establishment Ottawa, 2001.
    DUARTE M F and BARANIUK R G. Spectral compressive sensing[J]. Applied and Computational Harmonic Analysis, 2013, 35(1): 111-129. doi: 10.1016/j.acha.2012.08.003.
    姚迪, 张鑫, 吴小川, 等. 基于迭代连续匹配追踪的高频地波雷达单次快拍DOA估计方法[J]. 系统工程与电子技术, 2017, 39(7): 1480-1485. doi: 10.3969/j.issn.1001-506X.2017.07.08.
    YAO Di, ZHANG Xin, WU Xiaochuan, et al. Single snapshot DOA estimation algorithm based on iteration continuous basis pursuit for HFSWR [J]. Systems Engineering and Electronics, 2017, 39(7): 1480-1485. doi: 10.3969/j.issn.1001- 506X.2017.07.08.
    陈胜, 席峰, 刘中. 正交压缩采样雷达偏离网格目标时延估计技术[J]. 电子学报, 2015, 43(12): 2352-2359. doi: 10.3969/ j.issn.0372-2112.2015.12.002.
    CHEN Sheng, XI Feng, and LIU Zhong. Time-delay estimation of off-grid targets for quadrature compressive sampling radar[J]. Acta Electronica Sinica, 2015, 43(12): 2352-2359. doi: 10.3969/j.issn.0372-2112.2015.12.002.
    汪钰, 姜元, 王彦华, 等. 基于原子范数最小化的一维距离像散射中心估计[J]. 信号处理, 2017, 33(4): 511-515. doi: 10.16798/j.issn.1003-0530.2017.04.008.
    WANG Yu, JIANG Yuan, WANG Yanhua, et al. Scattering center estimation of HRRP via atomic norm minimization[J]. Journal of Signal Processing, 2017, 33(4): 511-515. doi: 10.16798/j.issn.1003-0530.2017.04.008.
    陈栩杉, 张雄伟, 杨吉斌, 等. 如何解决基不匹配问题: 从原子范数到无网格压缩感知[J]. 自动化学报, 2016, 42(3): 335-346. doi: 10.16383/j.aas.2016.c150539.
    CHEN Xushan, ZHANG Xiongwei, YANG Jibin, et al. How to overcome basis mismatch: from atomic norm to gridless compressive sensing[J]. Acta Automatica Sinica, 2016, 42(3): 335-346. doi: 10.16383/j.aas.2016.c150539.
    CANDES E and RECHT B. Exact matrix completion via convex optimization[J]. Communications of the ACM, 2012, 55(6): 111-119. doi: 10.1145/2184319.2184343.
    CANDES E J and PLAN Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98(6): 925-936. doi: 10.1109/ JPROC.2009.2035722.
    CHEN Y and CHI Y. Spectral compressed sensing via structured matrix completion[C]. International Conference on Machine Learning, Atlanta, Georgia, USA, 2013(3): 414-422. doi: 10.1109/TIT.2014.2343623.
    赵玉娟, 郑宝玉, 陈守宁. 矩阵填充及其在信号处理中的应用[J]. 信号处理, 2015, 31(4): 423-436. doi: 10.3969/j.issn.1003- 0530.2015.04.007.
    ZHAO Yujuan, ZHENG Baoyu, and CHEN Shouning. Matrix completion and its application in signal processing[J]. Journal of Signal Processing, 2015, 31(4): 423-436. doi: 10.3969/j.issn.1003-0530.2015.04.007.
    YANG D, LIAO G, ZHU S, et al. SAR imaging with undersampled data via matrix completion[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1539-1543. doi: 10.1109/LGRS.2014.2300170.
    HU X, TONG N, DING S, et al. ISAR imaging with sparse stepped frequency waveforms via matrix completion[J]. Remote Sensing Letters, 2016, 7(9): 847-854. doi: 10.1080/ 2150704X.2016.1192699.
    BI H, JIANG C, ZHANG B, et al. Radar change imaging with undersampled data based on matrix completion and Bayesian compressive sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1546-1550. doi: 10.1109/LGRS.2015. 2412677.
    BLUMENSATH T and DAVIES M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274.
    FAZEL, M, HAITHAM H, and STEPHEN P. A rank minimization heuristic with application to minimum order system approximation[C]. Proceedings of the 2001 American Control Conference, Arlington, VA, 2001(6): 4734-4739.
    TUTUNCU R H, TOH K C, and TODD M J. SDPT3A MATLAB software package for semidefinite-quadratic-linear programming, version 3.0 technical report[R]. Department of Mathematics, National University of Singapore, Singapore, 2001.
    FEUILLEN T, MALLAT A, and VANDENDORPE L. Stepped frequency radar for automotive application: Range-Doppler coupling and distortions analysis[C]. IEEE Military Communications Conference, Baltimore, MD, 2016: 894-899.
    FYHN K, DADKHAHI H, and DUARTE M F. Spectral compressive sensing with polar interpolation[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, 2013: 6225-6229.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (877) PDF downloads(227) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return