Citation: | WANG Qi, ZHANG Pengcheng, WANG Jianming, LI Xiuyan, LIAN Zhijie, CHEN Qingliang, CHEN Tongyun, CHEN Xiaojing, HE Jing, DUAN Xiaojie, WANG Huaxiang. Block-Sparse Reconstruction for Electrical Impedance Tomography[J]. Journal of Electronics & Information Technology, 2018, 40(3): 676-682. doi: 10.11999/JEIT170425 |
WANG Q, LIAN Z, WANG J, et al. Accelerated reconstruction of electrical impedance tomography images via patch based sparse representation[J]. Review of Scientific Instruments, 2016, 87(11): 114707, doi: 10.1063/1.4966998.
|
SBARBARO D, VAUHKONEN M, and JOHANSEN T A. State estimation and inverse problems in electrical impedance tomography: observability, convergence and regularization[J]. Inverse Problems, 2015, 31(4): 045004, doi: 10.1088/0266- 5611/31/4/045004.
|
Ye J, WANG H, and YANG W. Image reconstruction for electrical capacitance tomography based on sparse representation[J]. IEEE Transactions on Instrumentation Measurement, 2015, 64(1): 89-102. doi: 10.1109/TIM.2014. 2329738.
|
LIU Y, YANG Z, and YANG L. Online signature verification based on DCT and sparse representation[J]. IEEE Transactions on Cybern, 2015, 45(11): 2498-2511. doi: 10.1109/TCYB.2014.2375959.
|
NAZZAL M and OZKARAMANLI H. Wavelet domain dictionary learning-based single image superresolution[J]. Signal, Image and Video Processing, 2015, 1(7): 1-11. doi: 10.1007/s11760-013-0602-7.
|
WIECZOREK M, FRIKEL J, VOGEL J, et al. X-ray computed tomography using curvelet sparse regularization[J]. Medical Physics, 2015, 42(4): 1555-1567. doi: 10.1118/ 1.4914368.
|
LIU Y, LIU S, and WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. doi: 10.1016/j.inffus.2014.09.004.
|
GARDE H and KNUDSEN K. Sparsity prior for electrical impedance tomography with partial data[J]. Inverse Problems in Science and Engineering, 2016(3): 524-541. doi: 10.1080/17415977.2015.1047365.
|
JIN B, KHAN T, and MAASS P. A reconstruction algorithm for electrical impedance tomography based on sparsity regularization[J]. International Journal for Numerical Methods in Engineering, 2012, 89(3): 337-353. doi: 10.1002 /nme.3247.
|
WANG Q, WANG H, ZHANG R, et al. Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography[J]. Review of Scientific Instruments, 2012, 83(10): 104707. doi: 10.1063/1.4760253.
|
YUE B, WANG S, LIANG X, et al. Robust coupled dictionary learning with 1-norm coefficients transition constraint for noisy image super-resolution[J]. Signal Processing, 2017, 140: 177-189. doi: 10.1016/j.sigpro.2017. 04.015.
|
QU X, HOU Y, LAM F, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[J]. Medical Image Analysis, 2014, 18(6): 843-856. do: 10.1016/j.media.2013.09.007.
|
HEMMING B, FAGERLUND A, and LASSILA A. Linearized solution to electrical impedance tomography based on the Schur conjugate gradient method[J]. Measurement Science Technology, 2007, 18(11): 3373-3383. doi: 10.1088/0957-0233/18/11/017.
|
WANG M. Inverse solutions for electrical impedance tomography based on conjugate gradients methods[J]. Measurement Science Technology, 2001, 13(1): 101-117. doi: 10.1088/0957-0233/13/1/314.
|
BAO C, CAI J F, and JI H. Fast sparsity-based orthogonal dictionary learning for image restoration[C]. IEEE International Conference on Computer Vision IEEE, Sydney, 2014: 3384-3391. doi: 10.1109/ICCV.2013.420.
|