Advanced Search
Volume 40 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
WANG Qi, ZHANG Pengcheng, WANG Jianming, LI Xiuyan, LIAN Zhijie, CHEN Qingliang, CHEN Tongyun, CHEN Xiaojing, HE Jing, DUAN Xiaojie, WANG Huaxiang. Block-Sparse Reconstruction for Electrical Impedance Tomography[J]. Journal of Electronics & Information Technology, 2018, 40(3): 676-682. doi: 10.11999/JEIT170425
Citation: WANG Qi, ZHANG Pengcheng, WANG Jianming, LI Xiuyan, LIAN Zhijie, CHEN Qingliang, CHEN Tongyun, CHEN Xiaojing, HE Jing, DUAN Xiaojie, WANG Huaxiang. Block-Sparse Reconstruction for Electrical Impedance Tomography[J]. Journal of Electronics & Information Technology, 2018, 40(3): 676-682. doi: 10.11999/JEIT170425

Block-Sparse Reconstruction for Electrical Impedance Tomography

doi: 10.11999/JEIT170425
Funds:

The Key Projects of National Science and Technology Support Program (2013BAF06B00), The National Natural Science Foundation of China (61601324, 61373104, 61402330, 61405143), The Natural Science Foundation of Tianjin Municipal Science and Technology Commission (15JCQNJC01500)

  • Received Date: 2017-05-09
  • Rev Recd Date: 2017-12-15
  • Publish Date: 2018-03-19
  • An electrical impedance image reconstruction algorithm based on adaptive block-sparse dictionary is proposed. A block-sparse dictionary is constructed creatively, which preferably preserves the details of reconstructed images. Meanwhile, the sparsifying dictionary optimization and image reconstruction are performed alternately, and the intermediate result of the iterative reconstruction is used as the training sample of the sparse dictionary, which can effectively improve the learning effect of the dictionary. The numerical simulation and experiment results show that the patch-based sparsity method for measure noise has excellent robustness and can accurately reconstruct the conductivity distribution image, especially the precise details of mutation.
  • loading
  • WANG Q, LIAN Z, WANG J, et al. Accelerated reconstruction of electrical impedance tomography images via patch based sparse representation[J]. Review of Scientific Instruments, 2016, 87(11): 114707, doi: 10.1063/1.4966998.
    SBARBARO D, VAUHKONEN M, and JOHANSEN T A. State estimation and inverse problems in electrical impedance tomography: observability, convergence and regularization[J]. Inverse Problems, 2015, 31(4): 045004, doi: 10.1088/0266- 5611/31/4/045004.
    Ye J, WANG H, and YANG W. Image reconstruction for electrical capacitance tomography based on sparse representation[J]. IEEE Transactions on Instrumentation Measurement, 2015, 64(1): 89-102. doi: 10.1109/TIM.2014. 2329738.
    LIU Y, YANG Z, and YANG L. Online signature verification based on DCT and sparse representation[J]. IEEE Transactions on Cybern, 2015, 45(11): 2498-2511. doi: 10.1109/TCYB.2014.2375959.
    NAZZAL M and OZKARAMANLI H. Wavelet domain dictionary learning-based single image superresolution[J]. Signal, Image and Video Processing, 2015, 1(7): 1-11. doi: 10.1007/s11760-013-0602-7.
    WIECZOREK M, FRIKEL J, VOGEL J, et al. X-ray computed tomography using curvelet sparse regularization[J]. Medical Physics, 2015, 42(4): 1555-1567. doi: 10.1118/ 1.4914368.
    LIU Y, LIU S, and WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. doi: 10.1016/j.inffus.2014.09.004.
    GARDE H and KNUDSEN K. Sparsity prior for electrical impedance tomography with partial data[J]. Inverse Problems in Science and Engineering, 2016(3): 524-541. doi: 10.1080/17415977.2015.1047365.
    JIN B, KHAN T, and MAASS P. A reconstruction algorithm for electrical impedance tomography based on sparsity regularization[J]. International Journal for Numerical Methods in Engineering, 2012, 89(3): 337-353. doi: 10.1002 /nme.3247.
    WANG Q, WANG H, ZHANG R, et al. Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography[J]. Review of Scientific Instruments, 2012, 83(10): 104707. doi: 10.1063/1.4760253.
    YUE B, WANG S, LIANG X, et al. Robust coupled dictionary learning with 1-norm coefficients transition constraint for noisy image super-resolution[J]. Signal Processing, 2017, 140: 177-189. doi: 10.1016/j.sigpro.2017. 04.015.
    QU X, HOU Y, LAM F, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[J]. Medical Image Analysis, 2014, 18(6): 843-856. do: 10.1016/j.media.2013.09.007.
    HEMMING B, FAGERLUND A, and LASSILA A. Linearized solution to electrical impedance tomography based on the Schur conjugate gradient method[J]. Measurement Science Technology, 2007, 18(11): 3373-3383. doi: 10.1088/0957-0233/18/11/017.
    WANG M. Inverse solutions for electrical impedance tomography based on conjugate gradients methods[J]. Measurement Science Technology, 2001, 13(1): 101-117. doi: 10.1088/0957-0233/13/1/314.
    BAO C, CAI J F, and JI H. Fast sparsity-based orthogonal dictionary learning for image restoration[C]. IEEE International Conference on Computer Vision IEEE, Sydney, 2014: 3384-3391. doi: 10.1109/ICCV.2013.420.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1287) PDF downloads(166) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return