Advanced Search
Volume 40 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
CHEN Yong, WU Chunting, LIU Huanlin. A Repaired Algorithm Based on Improved Compressed Sensing to Repair Damaged Fiber Bragg Grating Sensing Signal[J]. Journal of Electronics & Information Technology, 2018, 40(2): 386-393. doi: 10.11999/JEIT170424
Citation: CHEN Yong, WU Chunting, LIU Huanlin. A Repaired Algorithm Based on Improved Compressed Sensing to Repair Damaged Fiber Bragg Grating Sensing Signal[J]. Journal of Electronics & Information Technology, 2018, 40(2): 386-393. doi: 10.11999/JEIT170424

A Repaired Algorithm Based on Improved Compressed Sensing to Repair Damaged Fiber Bragg Grating Sensing Signal

doi: 10.11999/JEIT170424
Funds:

The National Natural Science Foundation of China (61071117), The Graduate Student Research Innovation Project of Chongqing (CYS17235)

  • Received Date: 2017-05-09
  • Rev Recd Date: 2017-07-21
  • Publish Date: 2018-02-19
  • To solve the problem of data loss in the field of Fiber Bragg Grating (FBG) sensing, a signal repaired method based on compressed sensing with improved reconstruction algorithm is proposed. According to the characteristics of signal, the suitable observation matrix and sparse dictionary are selected to repair the damaged spectral signal. An adaptive threshold function, which is used to match the characteristics of signal, is proposed in the reconstruction algorithm, and the criterion of threshold rationality is added. The relationship between the recovery precision of signal and sensing accuracy of fiber Bragg grating is analyzed, and the repairing effects are validated by peak-detected error of reconstructed signal. Simulation results show that the average relative error is10-6 when 30% of the data is lost. The root mean square error is 0.0707, which is 0.0232~0.1159 lower than the contrast algorithms. The peak-detected error is lower than the others. Besides, the average running time of the system is much lower than the compared algorithms. All the results show that the proposed algorithm can well achieve the recovery of missing data, so as to improve the measurement precision of fiber Bragg grating sensor.
  • loading
  • LI Jianzhi, XU Longxiang, and KINZO Kishida. FBG-based positioning method for BOTDA sensing[J]. IEEE Sensors Journal, 2016, 16(13): 5236-5242. doi: 10.1109/JSEN.2016. 2556748.
    CHEN W P, SHIH F H, TSENG P J, et al. Application of a packaged fiber Bragg grating sensor to outdoor optical fiber cabinets for environmental monitoring[J]. IEEE Sensors Journal, 2015, 15(2): 734-741. doi: 10.1109/JSEN.2014. 2353040.
    蒋善超, 王静, 隋青美, 等. 基于压缩感知算法的光栅光谱重构及其应用特性研究[J]. 光学学报, 2014, 34(8): 322-326. doi: 10.3788/CJL201542.0805008.
    JIANG Shanchao, WANG Jing, SUI Qingmei, et al. Research on grating spectrum reconstruction based on compressed sensing and its application characteristics[J]. Acta Optica Sinica, 2014, 34(8): 322-326. doi: 10.3788/CJL201542. 0805008.
    DING L Y, ZHOU C, DENG Q X, et al. Real-time safety early warning system for cross passage construction in Yangtze Riverbed Metro Tunnel based on the internet of things[J]. Automation in Construction, 2013, 36: 25-37. doi: 10.1016/j.autcon.2013.08.017.
    HU Haixiao, LI Shuxin, WANG Jihui, et al. FBG-based real-time evaluation of transverse cracking in cross-ply laminates[J]. Composite Structures, 2016, 138: 151-160. doi: 10.1016/j.compstruct.2015.11.037.
    SAI Ji, SUN Yajie, and SHEN Jian. A method of data recovery based on compressive sensing in wireless structural health monitoring[J]. Mathematical Problems in Engineering, 2014: 546478. doi: 10.1155/2014/546478.
    张新鹏, 胡茑庆, 程哲, 等. 基于压缩感知的振动数据修复方法[J]. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63. 200506.
    ZHANG Xinpeng, HU Niaoqing, CHENG Zhe, et al. Vibration data recovery based on compressed sensing[J]. Acta Physica Sinica, 2014, 63(20): 200506. doi: 10.7498/aps.63. 200506.
    余翔, 郑寒冰, 曾银强. 基于压缩感知的自适应加权匹配追踪算法[J]. 重庆邮电大学学报(自然科学版), 2016, 28(5): 707-712. doi: 10.3979/j.issn.1673-825X.2016.05.015.
    YU Xiang, ZHENG Hanbing, and ZENG Yinqiang. Adaptive weighting matching pursuit algorithm based on compressed sensing[J]. Journal of Chongqing University of Posts and Telecommunication (Natural Science Edition), 2016, 28(5): 707-712. doi: 10.3979/j.issn.1673-825X.2016.05. 015.
    姜力茹, 许云达, 高猛. 基于压缩感知的塔康方位估计算法[J].重庆邮电大学学报(自然科学版), 2017, 29(3): 365-370. doi: 10.3979/j.issn.1673-825X.2017.03.013.
    JIANG Liru, XU Yunda, and GAO Meng. TACAN azimuth estimation algorithm based on compressed sensing[J]. Journal of Chongqing University of Posts and Telecommunication (Natural Science Edition), 2017, 29(3): 365-370. doi: 10.3979/j.issn.1673-825X.2017.03.013.
    YUAN Mei, WANG Shujuan, DONG Shaopeng, et al. Reconstruction of undersampled damage monitoring signal based on compressed sensing[C]. Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference Yantai, China, 2014: 2443-2448. doi: 10.1109/CGNCC.2014. 7007553.
    CANDES E J and TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. doi: 10.1109/TIT.2005.858979.
    BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. doi: 10.1109/MSP. 2007.4286571.
    MALLAT S G and ZHANG Z F. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. doi: 10.1109/78.258082.
    NEEDELL D and VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316. doi: 10.1109 /JSTSP.2010.2042412.
    CHEN Yong, ZHANG Yulan, LIU Huanlin, et al. FBG sensing signal dealing with improved orthogonal subspace pursuit method[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(21): 3303-3309. doi: 10.1016/ j.ijleo.2015.08.025.
    WANG Rui, ZHANG Jinglei, REN Suli, et al. A reducing iteration orthogonal matching pursuit algorithm for compressive sensing[J]. Tsinghua Science and Technology, 2016, 21(1): 71-79. doi: 10.1109/TST.2016.7399284.
    THONG T D, LU G, NAM N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, 2008, 10: 581-587. doi: 10.1109/ACSSC.2008.5074472.
    LI Mingyu, YANG Zhenxing, ZHANG Zhongming, et al. Sparsity adaptive estimation of memory polynomial based models for power amplifier behavioral modeling[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(5): 370-372. doi: 10.1109/LMWC.2016.2549024.
    唐朝伟, 王雪锋, 杜永光. 一种稀疏度自适应分段正交匹配追踪算法[J]. 中南大学学报(自然科学版), 2016, 47(3): 784-792. doi: 10.11817/j.issn.1672-7207.2016.03.011.
    TANG Chaowei, WANG Xuefeng, and DU Yongguang. A sparsity adaptive stagewise orthogonal matching pursuit algorithm[J]. Journal of Central South University (Science and Technology), 2016, 47(3): 784-792. doi: 10.11817/j.issn. 1672-7207.2016.03.011.
    DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121.
    周亚同, 王丽莉, 唐红梅. 基于压缩感知的稀疏度自适应图像修复[J]. 铁道学报, 2014, 36(9): 52-59. doi: 10.3969/j.issn. 1001-8361.2014.09.008.
    ZHOU Yatong, WANG Lili, and TANG Hongmei. Sparsity adaptive algorithm for image inpainting based on compressive sensing[J]. Journal of the China Railway Society, 2014, 36(9): 52-59. doi: 10.3969/j.issn.1001-8361.2014.09.008.
    吴迪, 王奎民, 赵玉新, 等. 分段正则化正交匹配追踪算法[J]. 光学精密工程, 2014, 22(5): 1395-1402. doi: 10.3788/OPE. 20142205.1395.
    WU Di, WANG Kuimin, ZHAO Yuxin, et al. Stagewise regularized orthogonal matching pursuit algorithm[J]. Optics and Precision Engineering, 2014, 22(5): 1395-1402. doi: 10.3788/OPE.20142205.1395.
    WANG Zhihong, SUN Guiling, ZHANG Ying, et al. Research on iterative thresholding orthogonal matching pursuit reconstruction algorithm based on sparsity adaptive[J]. Journal of Computational Information Systems, 2014, 10(10): 4339-4346. doi: 10.12733/jcis10336.
    CHEN Yong, YANG Kai, and LIU Huanlin. Self-adaptive multi-peak detection algorithm for FBG sensing signal[J]. IEEE Sensors Journal, 2016, 16(8): 2658-2665. doi: 10.1109/ JSEN.2016.2516038.
    陈勇, 杨凯, 刘焕淋. 多峰光纤布拉格光栅传感信号的自适应寻峰处理[J]. 中国激光, 2015, 42(8): 184-189. doi: 10.3788/ CJL201542.0805008.
    CHEN Yong, YANG Kai, and LIU Huanlin. A Self-adaptive peak detection algorithm to process multi-peak fiber Bragg grating sensing signal[J]. Chinese Journal of Lasers, 2015, 42(8): 184-189. doi: 10.3788/CJL201542.0805008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1776) PDF downloads(132) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return