Advanced Search
Volume 39 Issue 11
Nov.  2017
Turn off MathJax
Article Contents
WANG Chen, FAN Yangyu, LI Bo. Saliency Detection Based on Robust Foreground Selection[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2644-2651. doi: 10.11999/JEIT170390
Citation: WANG Chen, FAN Yangyu, LI Bo. Saliency Detection Based on Robust Foreground Selection[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2644-2651. doi: 10.11999/JEIT170390

Saliency Detection Based on Robust Foreground Selection

doi: 10.11999/JEIT170390
Funds:

The National Natural Science Foundation of China (61379104)

  • Received Date: 2017-04-26
  • Rev Recd Date: 2017-07-17
  • Publish Date: 2017-11-19
  • Saliency detection is to find the most important object automatically according to the human visual in the unknown scene. For improving the precision of saliency detection, the saliency detection based on robust foreground seeds via manifold ranking is proposed in this paper. Firstly, the two different convex hulls are got by the Harris corner and boundary connectivity algorithm. And the original object region is defined by the intersection about the above convex hulls. Secondly, the superpixels in convex hull are done the similarity detection with the outer edge of the convex hull. The superpixels are removed when they are similar to most of the outer edge, and the more precision foreground seeds are got. Using the anchor graph, a novel graph construction is built to express the relationship between data nodes. And then, two different kinds of salient results will be got based on ranking on manifolds using foreground and background seeds respectively. Finally, the saliency map is got through optimizing a novel cost function. Experimental results prove that the proposed algorithm improves the performance evaluation of precision and recall rate further.
  • loading
  • GUO Chuanxin, LI Zhenbo, QIAO Xi, et al. Image segmentation of underwater sea cucumber using grabcut with saliency map[J]. Transaction of the Chinese Society for Agricultural Machinery, 2015, 46(1): 147-152. doi: 10.6041/ j.issn.1000-1298. 2015. S0.025.
    郭传鑫, 李振波, 乔曦, 等. 基于融合显著图与GrabCut算法的水下海参图像分割[J]. 农业机械学报, 2015, 46(1): 147-152. doi: 10.6041/j.issn.1000-1298.2015.S0.025.
    薛梦霞, 彭晖, 刘士荣, 等. 基于视觉显著性的场景目标识别[J]. 控制工程, 2106, 23(5): 687-692. doi: 1671-7848(2016) 05-0687-06.
    XUE Mengxia, PENG Hui, LIU Shirong, et al. Scene object recognition based on visual saliency[J]. Control Engineering of China, 2106, 23(5): 687-692. doi: 1671-7848(2016)05-0687- 06.
    李然, 李艳灵, 崔子冠, 等. 视觉显著性导向的图像压缩感知测量与重建[J]. 华中科技大学学报(自然科学版), 2016, 44(5): 13-18. doi: 10.13245/j.hust.160503.
    LI Ran, LI Yanling, CUI Ziguang, et al. Visual saliency oriented compressive sensing measurement and reconstruction of images[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(5): 13-18. doi: 10.13245/j.hust.160503.
    赵宏伟, 李清亮, 刘萍萍, 等. 特征点显著性约束的图像检索方法[J]. 吉林大学学报(工学版), 2016, 46(2): 542-548. doi: 10.13229/j.cnki.jdxbgxb20160232.
    ZHAO Hongwei, LI Qingliang, LIU Pingping, et al. Feature saliency constraint based image retrieval method[J]. Journal of Jinlin University (Engineering and Technology Edition), 2016, 46(2): 542-548. doi: 10.13229/j.cnki.jdxbgxb20160232.
    PERAZZI F, KRAHENBUHUL P, PRITCH Y, et al. Saliency filters: Contrast based filtering for salient region detection[C]. Computer Vision and Pattern Recognition 2012, Providence, USA, 2012: 733-740. doi: 10.1109 /CVPR.2012. 6247743.
    WEI Yichen, WEN Fang, ZHU Wangjing, et al. Geodesic saliency using background priors[C]. European Conference on Computer Vision 2012, Firenze, Italy, 2012: 29-42. doi: 10.1007/978-3-642-33712-3_3.
    YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]. Computer Vision and Pattern Recognition 2013, Portland, USA, 2013: 3166-3173. doi: 10.1109/CVPR.2013.407.
    ZHU Wangjiang, LIANG Shuang, WEI Yiche, et al. Saliency optimization from robust background detection[C]. Computer Vision and Pattern Recognition 2014, Columbus, USA, 2014: 2814-2821. doi: 10.1109/CVPR.2014.360.
    LIU Tie, SUN Jian, ZHENG Nanning, et al. Learning to detect a salient object[C]. Computer Vision and Pattern Recognition, 2007, Minneapolis, USA, 2007: 353-367. doi: 10.1109/CVPR.2007.383047.
    YANG Jimei and YANG Minghsuan. Top-down visual saliency via joint CRF and dictionary learning[C]. Computer Vision and Pattern Recognition 2012, Providence, USA, 2012: 2296-2303. doi: 10.1109/CVPR.2012.6247940.
    GOPALAKRISHNAN V, HU Y, and RAJAN D. Random walks on graphs for salient object detection in images[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3232-3242. doi: 10.1109/TIP.2010.2053940.
    吕建勇, 唐振民. 一种基于图的流形排序的显著性目标检测改进方法[J]. 电子与信息学报, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619.
    LU Jianyong and TANG Zhenmin. An imporved graph-based manifold ranking for salient object detection[J]. Journal of Elecctronics Information Technology, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619.
    QI Wei, CHENG Mingming, BORJI Ali, et al. Saliency-Rank: Two-stage manifold ranking for salient object detection[J]. Computational Visual Media, 2015, 1(4): 309-320. doi: 10. 1007/s41095-015-0028y.
    XIE Yulin, LU Huchuan, and YANG Minghsuan. Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processing, 2013, 22(5): 1689-1698. doi: 10.1109/TIP. 2012.2216276.
    LIU Risheng, CAO Junjie, LIN Zhouchen, et al. Adaptive differential equation learning for visual saliency detection[C]. Computer Vision and Pattern Recognition 2014, Columbus, USA, 2014: 3862-3869. doi: 10.1109/CVPR.2014.494.
    林晓, 王燕玲, 朱恒亮, 等. 改进凸包的贝叶斯模型显著性检测算法[J]. 计算机辅助设计与图形学学报, 2017, 29(2): 221-228.
    LIN Xiao, WANG Yanling, ZHU Henliang, et al. Saliency detection based on the Bayesian model of improved convex hull[J]. Journal of computer-Aided Design and Computer Graphics, 2017, 29(2): 221-228.
    ZHOU D, WESTON J, GRETTON A, et al. Ranking on data manifolds[C]. Neural Information Processing Systems 2003, Vancouver, Canada, 2003: 169-176.
    WEIJER J, GEVERS T, and BAGDANOV A. Boosting color saliency in image feature detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 150-156. doi: 10.1109/ TPAMI.2006.3.
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/ TPAMI.2012.120.
    LIU Wei, HE Junfeng, and CHANG Shihfu. Large graph construction for scalable semi-supervised learning[C]. The 27th International Conference on Machine Learning, Haifa, 2010: 679-686.
    YANG Y, NIE F, XU D, et al. A multimedia retrieval framework basd on semi-supervised ranking and relevance feedback[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 723-742. doi: 10.1109/ TPAMI.2011.170.
    YAN Qiong, SHI Jianping, XU Li, et al. Hierarchical image saliency detection on extended CSSD[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 717-729. doi: 10.1109/ TPAMI.2015.2465960.
    ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]. Computer Vision and Pattern Recognition 2009, Miami, USA, 2009: 1597-1604. doi: 10.1109 /CVPR.2009.5206596.
    CHENG M, ZHANG G X, MITRA N J, et al. Global contrast based salient region detection[C]. Computer Vision and Pattern Recognition 2011, Colorado, 2011: 409-416. doi: 10.1109/CVPR.2011.5995344.
    YAN Q, XU L, SHI J, et al. Hierarchical saliency detection[C]. Computer Vision and Pattern Recognition 2013, Portland, USA, 2013: 1155-1162. doi: 10.1109 /CVPR.2013.153.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1112) PDF downloads(292) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return