Advanced Search
Volume 40 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
MA Jitong, QIU Tianshuang, LI Rong, XIA Nan, LI Jingchun. Dual-mode Blind Equalization Algorithm Based on Renyi Entropy and Fractional Lower Order Statistics Under Impulsive Noise[J]. Journal of Electronics & Information Technology, 2018, 40(2): 378-385. doi: 10.11999/JEIT170366
Citation: MA Jitong, QIU Tianshuang, LI Rong, XIA Nan, LI Jingchun. Dual-mode Blind Equalization Algorithm Based on Renyi Entropy and Fractional Lower Order Statistics Under Impulsive Noise[J]. Journal of Electronics & Information Technology, 2018, 40(2): 378-385. doi: 10.11999/JEIT170366

Dual-mode Blind Equalization Algorithm Based on Renyi Entropy and Fractional Lower Order Statistics Under Impulsive Noise

doi: 10.11999/JEIT170366
Funds:

The National Natural Science Foundation of China (61671105, 61139001, 61172108, 81241059)

  • Received Date: 2017-04-24
  • Rev Recd Date: 2017-07-27
  • Publish Date: 2018-02-19
  • To improve the convergence speed and noise suppression effects of blind equalizer under impulsive noise environment, a new dual-mode blind equalization algorithm based on Renyi entropy and fractional lower order statistics is presented. Renyi entropy and fractional lower order statistics are combined as cost functions to update the weight coefficients of the equalizer in this method, which can improve the convergence speed and enhance the ability of suppressing impulse noise. In addition, considering the robustness of system, a double-threshold based weighting decision method is proposed. By setting double thresholds and a nonlinear weighting function, the switching between two cost functions become smooth. Simulation experiments are carried out under different impulse noise and different channel conditions. The results show that the algorithm converges faster and suppresses impulse noise effectively at the same time.
  • loading
  • AZIM A W, ABRAR S, ZERGUINE A, et al. Performance analysis of a family of adaptive blind equalization algorithms for square-QAM[J]. Digital Signal Processing, 2016, 48(C): 163-177. doi: 10.1016/j.dsp.2015.09.002.
    SCARANO G, PETRONI A, BIAGI M, et al. Second order statistics driven LMS blind fractionally spaced channel equalization[J]. IEEE Signal Processing Letters, 2017, 24(2): 161-165. doi: 10.1109/LSP.2016.2635034.
    DAS R L and NARWARIA M. Lorentzian based adaptive filters for impulsive noise environments[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64(6): 1529-1539. doi: 10.1109/TCSI.2017.2667705.
    LUAN S, QIU T, ZHU Y, et al. Cyclic correntropy and its spectrum in frequency estimation in the presence of impulsive noise[J]. Signal Processing, 2016, 120: 503-508. doi: 10.1016/ j.sigpro.2015.09.023.
    PELEKANAKIS K and CHITRE M. Adaptive sparse channel estimation under symmetric alpha-stable noise[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 3183-3195. doi: 10.3390/a9030054.
    黄焱, 邱钊洋, 欧阳喜. 基于星座软信息的猝发信号盲均衡算法[J]. 电子与信息学报, 2017, 39(3): 568-574. doi: 10.11999 /JEIT160420.
    HUANG Yan, QIU Zhaoyang, and OUYANG Xi. Blind equalization for burst signals based on soft information of constellation[J]. Journal of Elestronics Information Technology, 2017, 39(3): 568-574. doi: 10.11999/JEIT160420.
    马思扬, 彭华, 王彬. 适用于稀疏多径信道的稀疏自适应常模盲均衡算法[J]. 通信学报, 2017, 38(1): 149-157. doi: 10.11959 /j.issn.1000-436x.2017017.
    MA Siyang, PENG Hua, and WANG Bin. Sparse adaptive constant blind equalization algorithm for sparse multipath channel[J]. Journal on Communications, 2017, 38(1): 149-157. doi: 10.11959/j.issn.1000-436x.2017017.
    SCARANO G, PETRONI A, BIAGI M, et al. Second-order statistics driven LMS blind fractionally spaced channel equalization[J]. IEEE Signal Processing Letters, 2017, 24(2): 161-165. doi: 10.1109/LSP.2016.2635034.
    RUPI M, TSAKALIDES P, Re E D, et al. Constant modulus blind equalization based on fractional lower-order statistics[J]. Signal Processing, 2004, 84(5): 881-894. doi: 10.1016/j.sigpro. 2004.01.006.
    LI S and QIU T S. Tracking performance analysis of fractional lower order constant modulus algorithm[J]. Electronics Letters, 2009, 45(11): 545-546. doi: 10.1049/ el.2009.0561.
    LI Sen, WANG Yan, and LIN Bin. Concurrent blind channel equalization in impulsive noise environments[J]. Chinese Journal of Electronics, 2013, 22(4): 741-746.
    SANTAMATIA I, ERDGMUS D, and PRINCIPE J C. Entropy minimization for supervised digital communications channel equalization[J]. IEEE Transactions on Signal Processing, 2002, 50(5): 1184-1192. doi: 10.1109/78.995074.
    张银兵, 赵俊渭, 李金明, 等. 基于Renyi熵的水声信道判决反馈盲均衡算法研究[J]. 电子与信息学报, 2009, 31(4): 911-915. doi: 10.3724/SP.J.1146.2008.00056.
    ZHANG Yinbing, ZHAO Junwei, LI Jinming, et al. Decision feedback blind equalization algorithm based on RENYI entropy for underwater acoustic channels[J]. Journal of Elestronics Information Technology, 2009, 31(4): 911-915. doi: 10.3724/SP.J.1146.2008.00056.
    郭业才, 龚秀丽, 张艳萍. 基于样条函数Renyi熵的时间分集小波盲均衡算法[J]. 电子与信息学报, 2011, 33(9): 2050-2055. doi: 10.3724/SP.J.1146.2011.00110.
    GUO Yecai, GONG Xiuli, and ZHANG Yanping. Spline function Renyi entropy based tme diversity wavelet blind equalization algorithm[J]. Journal of Elestronics Information Technology, 2011, 33(9): 2050-2055. doi: 10.3724 /SP.J.1146.2011.00110.
    FKI S, MESSAI M, AISSA-EL-BEY A, et al. Blind equalization based on pdf fitting and convergence analysis[J]. Signal Processing, 2014, 101: 266-277. doi: 10.1016/j.sigpro. 2014.02.009.
    邱天爽, 戚寅哲. 稳定分布噪声下基于粒子滤波的双站伪多普勒定位方法[J]. 通信学报, 2016, 37(1): 28-34. doi: 10.11959 /J.ISSN.1000-436x.2016004.
    QIU Tianshuang and QI Yinzhe. Dual-station pseudo- doppler localization method based on particle filtering with stable distribution noise[J]. Journal on Communications, 2016, 37(1): 28-34. doi: 10.11959/J.ISSN.1000-436x.2016004.
    宋爱民. 稳定分布噪声下时延估计与波束形成新算法[D]. [博士论文], 大连理工大学, 2015.
    SONG Aimin. New algorithms for time delay estimation and beamforming under stable distribution Noise[D]. [Ph.D. dissertation], Dalian University of Technology, 2015.
    PRINCIPE J C, XU D, ZHAO Q, et al. Learning from examples with information theoretic criteria[J]. Journal of VLSI Signal Processing, 2000, 26(1): 61-77. doi: 10.1023/A: 1008143417156.
    李进, 冯大政, 刘文娟. 快速 QAM 信号多模盲均衡算法[J]. 电子与信息学报, 2013, 35(2): 273-279. doi: 10.3724/SP.J. 1146.2012.00609.
    LI Jin, FENG Dazheng, and LIU Wenjuan. A fast multimodulus blind equalization algorithm for QAM signal[J]. Journal of Elestronics Information Technology, 2013, 35(2): 273-279. doi: 10.3724/SP.J.1146.2012.00609.
    张银兵, 赵俊渭, 郭业才, 等. 抑制稳定噪声的改进常数模盲均衡算法[J]. 西北工业大学学报, 2010, 28(2): 202-206.
    ZHANG Yinbing, ZHAO Junwei, GUO Yecai, et al. Improving AECCMA for blind equalization to make it suitable in noise[J] Journal of Northwestern Polytechnical University, 2010, 28(2): 202-206.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1464) PDF downloads(154) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return