Advanced Search
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
HE Wenwu, XIA Qiaoqiao, ZOU Lian. Alternating Direction Method of Multipliers LDPC Penalized Decoding Algorithm Based on Variable Node Update[J]. Journal of Electronics & Information Technology, 2018, 40(1): 95-101. doi: 10.11999/JEIT170358
Citation: HE Wenwu, XIA Qiaoqiao, ZOU Lian. Alternating Direction Method of Multipliers LDPC Penalized Decoding Algorithm Based on Variable Node Update[J]. Journal of Electronics & Information Technology, 2018, 40(1): 95-101. doi: 10.11999/JEIT170358

Alternating Direction Method of Multipliers LDPC Penalized Decoding Algorithm Based on Variable Node Update

doi: 10.11999/JEIT170358
Funds:

The National Natural Science Foundation of China (61501334), The Fundamental Research Funds for the Central Universities of CCNU (CCNU16A05028)

  • Received Date: 2017-04-20
  • Rev Recd Date: 2017-10-20
  • Publish Date: 2018-01-19
  • The LDPC decoding algorithm with improved penalty function can improve the performance of decoding algorithm based on Alternating Direction Method of Multipliers (ADMM), but it has too many parameters to be optimized and the performance improvement is limited. For this problem, by comparing it with other decoding algorithms with penalty function, it is found that the difference between them is only the update rules of variable nodes in the decoding algorithm. Therefore, a new update method for variable nodes is proposed in this paper to reduce the number of parameters and improve the decoding performance. The simulation results show that, compared with the original decoding algorithm, the decoding algorithm in this paper reduces the parameters which need to be optimized, in addition, the average number of iterations of the algorithm is less and the algorithm can achieve about 0.1 dB performance improvement.
  • loading
  • FELDMAN J, WAINWRIGHT M J, and KARGER D R. Using linear programming to decode binary linear codes[J]. IEEE Transactions on Information Theory, 2005, 51(3): 954-972. doi: 10.1109/TIT.2004.842696.
    CHILAPPAGARI S K, CHERTKOV M, and VASIC B. An efficient instanton search algorithm for LP decoding of LDPC codes over the BSC[J]. IEEE Transactions on Information Theory, 2011, 57(7): 4417-4426. doi: 10.1109/TIT.2011. 2146670.
    BURSHTEIN D and GOLDENBERG I. Improved linear programming decoding of LDPC codes and bounds on the minimum and fractional distance[J]. IEEE Transactions on Information Theory, 2011, 57(11): 7386-7402. doi: 10.1109/ TIT.2011.2162224.
    FELDMAN J, MALKIN T, SERVEDIO R A, et al. LP decoding corrects a constant fraction of errors[J]. IEEE Transactions on Information Theory, 2007, 53(1): 82-89. doi: 10.1109/TIT.2006.887523.
    BAZZI L, GHAZI B, and URBANKE R L. Linear programming decoding of spatially coupled codes[J]. IEEE Transactions on Information Theory, 2014, 60(8): 4677-4698. doi: 10.1109/TIT.2014.2325903.
    BARMAN S, LIU Xishuo, DRAPER S C, et al. Decomposition methods for large scale LP decoding[J]. IEEE Transactions on Information Theory, 2013, 59(12): 7870-7886.
    WEI Haoyuan, JIAO Xiaopeng, and MU Jianjun. Reduced- complexity linear programming decoding based on ADMM for LDPC codes[J]. IEEE Communication Letters, 2015, 19(6): 909-912. doi: 10.1109/LCOMM.2015.2418261.
    JIAO Xiaopeng, MU Jianjun, HE Yucheng, et al. Efficient ADMM decoding of LDPC codes using look-up tables[J]. IEEE Transactions on Communications, 2017, 19(4): 271-285. doi: 10.1109/TCOMM.2017.2659733.
    DEBBABI I, GAL B L, KHOUJA N, et al. Fast converging ADMM penalized algorithm for LDPC decoding[J]. IEEE Communication Letters, 2016, 20(4): 648-651. doi: 10.1109 /LCOMM.2016.2531040.
    DEBBABI I, GAL B L, KHOUJA N, et al. Comparison of different schedulings for the ADMM based LDPC decoding[J]. International Symposium on Turbo Codes Iterative Information Processing, 2016, 20(4): 51-55. doi: 10.1109/ ISTC.2016.7593075.
    LIU Xishuo and DRAPER S C. The ADMM penalized decoder for LDPC codes[J]. IEEE Transactions on Information Theory, 2016, 62(6): 2966-2984. doi: 10.1109/ TIT.2016.2555847.
    LIU Xishuo. ADMM decoding of LDPC and multipermutation codes: from geometries to algorithms[D]. [Ph.D. dissertation], University of Wisconsin, 2015.
    JIAO Xiaopeng, WEI Haoyuan, and MU Jianjun. Improved ADMM penalized decoder for irregular low-density parity-check codes[J]. IEEE Communication Letters, 2015, 19(6): 913-916. doi: 10.1109/LCOMM.2015.2421445.
    WANG Biao, MU Jianjun, JIAO Xiaopeng, et al. Improved penalty functions of ADMM decoder for LDPC codes[J]. IEEE Communication Letters, 2016, 21(99): 234-237. doi: 10.1109/LCOMM.2016.2627575.
    WASSON M and DRAPER S C. Hardware based projection onto the parity polytope and probability simplex[C]. IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2015: 1015-1020.
    ZHANG Xiaojie and SIEGEL P H. Adaptive cut generation algorithm for improved linear programming decoding of binary linear codes[J]. IEEE Transactions on Information Theory, 2012, 58(10): 6581-6594. doi: 10.1109/TIT.2012. 2204955.
    STORN R and PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. doi: 10.1023/A:1008202821328.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1553) PDF downloads(193) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return