Advanced Search
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
LI Long, LIU Zheng. Kernel Principal Component Correlation and Discrimination Analysis Feature Extraction Method for Target HRRP Recognition[J]. Journal of Electronics & Information Technology, 2018, 40(1): 173-180. doi: 10.11999/JEIT170329
Citation: LI Long, LIU Zheng. Kernel Principal Component Correlation and Discrimination Analysis Feature Extraction Method for Target HRRP Recognition[J]. Journal of Electronics & Information Technology, 2018, 40(1): 173-180. doi: 10.11999/JEIT170329

Kernel Principal Component Correlation and Discrimination Analysis Feature Extraction Method for Target HRRP Recognition

doi: 10.11999/JEIT170329
  • Received Date: 2017-04-14
  • Rev Recd Date: 2017-07-10
  • Publish Date: 2018-01-19
  • For radar High Resolution Range Profile (HRRP) automatic target recognition, the features should be extracted with sufficient target information, high discrimination, noise robustness, and low feature vector dimension. However, radar HRRP recognition suffers from insufficient amount of information and low discrimination feature, besides the radar recognition system also need the ability of real-time processing with low dimension. To obtain features with merits of low-dimension and high-discrimination, a novel feature extraction method is designed for radar high range resolution profile, namely Kernel Principal Component Correlation and Discrimination Analysis (KPCCDA). With the proposed method, the statistical characteristics of different scatter range cells can be effectively used by Kernel Principal Component Analysis (KPCA). And the within-class correlation and between- class discrimination are maximized with linear discrimination analysis and canonical correlation analysis used. Besides, the redundancy and dimensionality of the feature vectors are reduced, yielding a lowered computational complexity to meet the storage requirement in practical radar target recognition. Experimental results with measured data validate the efficiency of the proposed method.
  • loading
  • WU Jiani, CHEN Yongguang, DAI Dahai, et al. Target recognition for polarimetric HRRP based on fast density search clustering method[J]. Journal of Electronics Information Technology, 2016, 38(10): 2461-2467. doi: 10.11999/JEIT151457.
    吴佳妮, 陈永光, 代大海, 等. 基于快速密度搜索聚类算法的极化HRRP分类方法[J]. 电子与信息学报, 2016, 38(10): 2461-2467. doi: 10.11999/JEIT151457.
    徐彬, 陈渤, 刘宏伟, 等. 基于注意循环神经网络模型的雷达高分辨率距离像目标识别[J]. 电子与信息学报, 2016, 38(12): 2988-2995. doi: 10.11999/JEIT161034.
    XU Bin, CHEN Bo, LIU Hongwei, et al. Attention-based recurrent neural network model for radar high-resolution range profile target recognition[J]. Journal of Electronics Information Technology, 2016, 38(12): 2988-2995. doi: 10. 11999/JEIT161034.
    李龙, 刘峥. 基于训练特征空间分布的雷达地面目标鉴别器设计[J]. 电子与信息学报, 2016, 38(4): 950-957. doi: 10.11999 /JEIT150786.
    LI Long and LIU Zheng. Identifier for radar ground target based on distribution of space of training features[J]. Journal of Electronics Information Technology, 2016, 38(4): 950-957. doi: 10.11999/JEIT150786.
    DU Lan, HE Hua, ZHAO Le, et al. Noise robust radar HRRP target recognition based on scatterer matching algorithm[J]. IEEE Sensors Journal, 2016, 16(6): 1743-1753. doi: 10.1109/ JSEN.2015.2501850.
    但波, 姜永华, 李敬军, 等. 基于空时融合隐马尔科夫模型的舰艇编队目标识别方法[J]. 电子与信息学报, 2015, 37(4): 926-932. doi: 10.11999/JEIT140589.
    DAN Bo, JIANG Yonghua, LI Jingjun, et al. Ship formation target recognition based on spatial and temporal fusion hidden Markov model[J]. Journal of Electronics Information Technology, 2015, 37(4): 926-932. doi: 10.11999/ JEIT140589.
    WANG Jianqiao, LI Yuehua, and CHEN Kun. Radar high- resolution range profile recognition via geodesic weighted sparse representation[J]. IET Radar, Sonar Navigation, 2015, 9(1): 75-83. doi: 10.1049/iet-rsn.2014.0113.
    DU Lan, LIU Hongwei, BAO Zheng, et al. Radar HRRP target recognition based on higher order spectra[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2359-2368. doi: 10.1109/TSP.2005.849161.
    WONG Weijing, TEOH Andrew, KHO Yauhee, et al. Kernel PCA enabled bit-string representation for minutiae-based cancellable fingerprint template[J]. Pattern Recognition, 2016, 51: 197-208. doi: 10.1016/j.patcog.2015.09.032.
    WANG Qingwang, GU Yanfeng, and TUIA Devis. Discriminative multiple kernel learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 3912-3927. doi: 10.1109/TGRS. 2016.2530807.
    LIN Da, XU Xin, and PU Fangling. Multiple feature fusion using a multiset aggregated canonical correlation analysis for high spatial resolution satellite image scene classification[C]. IEEE Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 481-484.
    DU Lan, LIU Hongwei, BAO Zheng, et al. A two-distribution compounded statistical model for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2226-2238. doi: 10.1109/TSP.2006.873534.
    DIAZ-MORALES Roberto and NAVIA-VAZQUEZ Angel. Efficient parallel implementation of kernel methods[J]. Neurocomputing, 2016, 191: 175-186. doi: 10.1016/j.neucom. 2015.11.097.
    ZHANG Ziming and TORR Philip. Object proposal generation using two-stage cascade SVMs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 102-115. doi: 10.1109/TPAMI.2015.2430348.
    SHUI Penglang, XU Shuwen, and LIU Hongwei. Range-spread target detection using consecutive HRRPs[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 647-665. doi: 10.1109/TAES.2011.5705697.
    DU Wanwen, WANG Fang, SHENG Weixing, et al. Modeling and simulation of radar echo signal of aircraft targets with GRECO[C] International Symposium on Antennas, Propagation and EM Theory. Kunming, China, 2009: 859-862.
    KONG Yu and FU Yun. Max-margin action prediction machine[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(9): 1844-1858. doi: 10.1109/ TPAMI.2015.2491928.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1355) PDF downloads(201) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return