Advanced Search
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
ZHOU Weiwei, YU Bin. Optimal Defense Strategy in WSNs Based on the Game of Multi-stage Intrusion Detection[J]. Journal of Electronics & Information Technology, 2018, 40(1): 63-71. doi: 10.11999/JEIT170323
Citation: ZHOU Weiwei, YU Bin. Optimal Defense Strategy in WSNs Based on the Game of Multi-stage Intrusion Detection[J]. Journal of Electronics & Information Technology, 2018, 40(1): 63-71. doi: 10.11999/JEIT170323

Optimal Defense Strategy in WSNs Based on the Game of Multi-stage Intrusion Detection

doi: 10.11999/JEIT170323
Funds:

The National Science Key Laboratory Fund (KJ-15-104), The Project of Key Scientific and Technological Research of Henan Province (132102210003)

  • Received Date: 2017-04-13
  • Rev Recd Date: 2017-09-01
  • Publish Date: 2018-01-19
  • To overcome the problem that the performance of intrusion detection deteriorates significantly in resource-constrained wireless sensor networks, a dynamically multi-stage game model of intrusion detection is proposed. Based on the Bayesian rules and prior probability that external node is a malicious node in this stage, the posterior probability of external node and the set of node vulnerable to attack are formulated respectively. Then, the optimal defense strategy for intrusion detection is calculated accurately according to the conditions of perfect Bayesian equilibrium. On this basis, a novel scheme for intrusion detection is proposed in WSNs based on the optimal strategy of multi-stage game model. Finally, experimental results show that the developed scheme has distinct advantage in improving the success rate of detection and suppression in clustered WSNs.
  • loading
  • 郁滨, 周伟伟. ZigBee同频攻击检测抑制模型研究[J]. 电子与信息学报, 2015, 37(9): 2211-2217. doi: 10.11999/JEIT 141395.
    YU B and ZHOU W W. Co-channel attack detection and suppression model for ZigBee network nodes[J]. Journal of Electronics Information Technology, 2015, 37(9): 2211-2217. doi: 10.11999/JEIT141395.
    杜晔, 张亚丹, 黎妹红, 等. 基于改进FastICA算法的入侵检测样本数据优化方法[J]. 通信学报, 2016, 37(1): 42-48. doi: 10.11959/j.issn.1000-436x.2016006.
    DU Y, ZHANG Y D, LI M H, et al. Improved Fast ICA algorithm for data optimization processing in intrusion detection[J]. Journal on Communications, 2016, 37(1): 42-48. doi: 10.11959/j.issn.1000-436x.2016006.
    杨安, 孙利民, 王小山, 等. 工业控制系统入侵检测技术综述[J]. 计算机研究与发展, 2016, 53(9): 2039-2054. doi: 10.7544 /issn.1000-1239.2016.20150465.
    YANG A, SUN L M, WANG X S, et al. Intrusion detection techniques for industrial control systems[J]. Journal of Computer Research and Development, 2016, 53(9): 2039-2054. doi: 10.7544/issn.1000-1239.2016.20150465.
    赵婧, 魏彬, 罗鹏, 等. 基于隐马尔可夫模型的入侵检测方法[J]. 四川大学学报, 2016, 16(1): 106-110. doi: 10.15961/ j.jsuese.2016.01.016.
    ZHAO J, WEI B, LUO P, et al. Intrusion detection method based on hidden Markov model[J]. Journal of Sichuan University, 2016, 16(1): 106-110. doi: 10.15961 /j.jsuese.2016. 01.016.
    KOLIAS C, KOLIAS V, and KAMBOURAKIS G. TermID: A distributed swarm intelligence-based approach for wireless intrusion detection[J]. International Journal of Information Security, 2016, 21(6): 1-16. doi: 10.1007/s10207-016-0335-z.
    YU Q, LYU J, JIANG L, et al. Traffic anomaly detection algorithm for wireless sensor networks based on improved exploitation of the GM (1, 1) model[J]. International Journal of Distributed Sensor Networks, 2016, 12(7): 218-227. doi: 10.1177/155014772181256.
    PATEL A, ALHUSSIAN H, PEDERSEN J M, et al. A nifty collaborative intrusion detection and prevention architecture for Smart Grid ecosystems[J]. Computers Security, 2017, 64(2): 92-109. doi: 10.1016/j.cose.2016.07.002.
    KALNOOR G, AGARKHED J, and PATIL S R. Agent- based QoS routing for intrusion detection of sinkhole attack in clustered wireless sensor networks[C]. The First International Conference on Computational Intelligence and Informatics, Hyderabad, India, 2017: 571-583. doi: 10.1007/ 978-981-10-2471-9_55.
    WANG X Y, YANG L Z, and CHEN K F. Sleach: secure low-energy adaptive clustering hierarchy protocol for wireless sensor networks[J]. Wuhan University Journal of Natural Sciences, 2005, 10(1): 127-131. doi: 10.1007/BF02828633.
    FOROOTANINIA A and GHAZNAVI M B. An improved watchdog technique based on power-aware hierarchical design for ids in wireless sensor networks[J]. International Journal of Network Security, 2012, 4(4): 161-178. doi: 10.5121/ijnsa. 2012.4411.
    DOUMIT S S and AGRAWAL D P. Self-organized criticality and stochastic learning based intrusion detection system for wireless sensor networks[C]. Military Communications Conference, Alexandria, USA, 2003: 609-614. doi: 10.1109/ MILCOM.2003.1290173.
    XIAO Z H, CHEN Z G, and DENG X H. Anomaly detection based on a multi-class CUSUM algorithm for WSN[J]. Journal of Computers, 2010, 5(2): 306-313. doi: 10.4304/jcp. 5.2.306-313.
    JOKAR P and LEUNG V. Intrusion detection and prevention for ZigBee-based home area networks in smart grids[J]. IEEE Transaction on Smart Grid, 2016, 15(3): 1-12. doi: 10.1109/TSG.2016.2600585.
    MOOSAVI H and BUI F M. A game-theoretic framework for robust optimal intrusion detection in wireless sensor networks[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(9): 1367-1379. doi: 10.1109/TIFS.2014. 2332816.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1181) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return