Advanced Search
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
YANG Guide, ZHOU Yuanping, XIA Wenlong . Cooperative Channel MIMO Wireless Transmission System with Space-time Optimization[J]. Journal of Electronics & Information Technology, 2018, 40(1): 102-107. doi: 10.11999/JEIT170321
Citation: YANG Guide, ZHOU Yuanping, XIA Wenlong . Cooperative Channel MIMO Wireless Transmission System with Space-time Optimization[J]. Journal of Electronics & Information Technology, 2018, 40(1): 102-107. doi: 10.11999/JEIT170321

Cooperative Channel MIMO Wireless Transmission System with Space-time Optimization

doi: 10.11999/JEIT170321
Funds:

University Doctoral Research Foundation of China (20130191110006)

  • Received Date: 2017-04-12
  • Rev Recd Date: 2017-08-30
  • Publish Date: 2018-01-19
  • A space-time optimized Multiple-Input Multiple-Output (MIMO) wireless transmission system based on virtual channel method is proposed. At the transmitter, various space-time virtual channels are generated that are connected with the actual space wireless channels to form the cooperative space division channels. According to the feedback information from the receiver, the Bit Error Rate (BER) can be significantly improved by using the simulated annealing algorithm to optimize the virtual channels. Morever, by using the virtual channel method, it allows one MIMO antenna to transmit multiple superposed data streams in one frequency band at the same time, therefore it can transmit more number of different data streams than the number of transmit antennas, breaking the conventional way that the number of different data streams to be transmitted is equal to the number of transmit antennas. Thus, the proposed MIMO system can significantly improve the spectral efficiency. Simulation results and experimental test results based on ZC706 and AD9361 hardware platforms in microwave anechoic chamber fully demonstrate the effectiveness of the proposed MIMO system.
  • loading
  • ZHANG Q, JIN S, MCKAY M, et al. Power allocation schemes for multicell massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 5941-5955. doi: 10.1109/TWC.2015.2444856.
    HONG X M, WANG C X, THOMPSON J, et al. On spacefrequency correlation of UWB MIMO channels[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4201-4213. doi: 10.1109/TVT. 2010.2075947.
    LIU Y, AI B, and CHEN B H. Impact of mutual coupling on LTE-R MIMO capacity for antenna array configurations in high speed railway scenario[C]. IEEE Vehicular Technology Conference, Nanjing, China, 2016: 1-5.
    NTT DOCOMO, Inc. 5G radio access: Requirement, concept and techniques[R]. 5G White Paper, Tokyo, Japan, 2014.
    RIMAL B P, VAN D P, and MAIER M. Mobile edge computing empowered fiber-wireless access networks in the 5G era[J]. IEEE Communications Magazine, 2017, 55(2): 192-200. doi: 10.1109 /MCOM.2017.1600156CM.
    AL-ABBASI Z Q and SO D K C. Power allocation for sum rate maximization in non-orthogonal multiple access system [C]. Personal, Indoor and Mobile Radio Communications, Hong Kong, 2015: 1649-1653.
    DO N T, COSTA D B D, DUONG T Q, et al. A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT[J]. IEEE Communications Letters, 2017, 21(3): 664-667. doi: 10.1109/LCOMM.2016.2631606.
    DING Z G, DAI H Y, and POOR H V. Relay selection for cooperative NOMA[J]. IEEE Wireless Communications Letters, 2016, 5(4): 416-419. doi: 10.1109/LWC.2016. 2574709.
    ALWAKEEL A S, MEHANA A H, and GHONEIM A. Pilot hopping in massive MIMO systems with MMSE channel estimation[C]. International Conference on Computing, Networking and Communications, Silicon Valley, CA, USA, 2017: 298-302.
    UPADHYA K, VOROBYOV S A, and VEHKAPERA M. Superimposed pilots are superior for mitigating pilot contamination in massive MIMO[J]. IEEE Transactions on Signal Processing, 2017, 65(11): 2917-2932. doi: 10.1109/TSP. 2017.2675859.
    SONG N, YANG T, and SUN H. Overlapped subarray based hybrid beamforming for millimeter wave multiuser massive MIMO[J]. IEEE Signal Processing Letters, 2017, 24(5): 550-554. doi: 10.1109/LSP.2017.2681689.
    SUN Q, HAN S F, PAN Z G, et al. On the ergodic capacity of MIMO NOMA systems[J]. IEEE Wireless Communications Letters, 2015, 4(4): 405-408. doi: 10.1109/LWC.2015. 2426709.
    SUN R J, WANG Y, WANG X S, et al. Transceiver design for cooperative nonorthogonal multiple access systems with wireless energy transfer[J]. IET Communications, 2016, 10(15): 1947-1955. doi: 10.1049/iet-com.2016.0120.
    DIAMANYOULAKIS P D, PAPPI K N, DING Z G, et al. Wireless-powered communications with non-orthogonal multiple access[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8422-8436. doi: 10.1109/ TWC.2016.2614937.
    SHIEH S L, LIN C H, HUANG Y C, et al. On gray labeling for downlink non-orthogonal multiple access without SIC[J]. IEEE Communications Letters, 2016, 20(9): 1721-1724. doi: 10.1109/LCOMM.2016.2584040.
    WINTERS J H. On the capacity of radio communication systems with diversity in a rayleigh fading environment[J]. IEEE Journal on Selected Areas in Communications, 1987, SAC-5(5): 871-878. doi: 10.1109/JSAC.1987.1146600.
    王青, 肖怀铁, 张安. 基于模拟退火算法的MIMO雷达稀疏线阵设计[J]. 计算机工程与应用, 2011, 47(8S): 272-276.
    WANG Q, XIAO H T, and ZHANG A. MIMO radar sparse linear array design based on simulated annealing algorithm [J]. Computer Engineering and Applications, 2011, 47(8S): 272-276.
    田景文, 高美娟. 人工神经网络算法研究及应用[M]. 北京: 北京理工大学出版社, 2006: 182-190.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1426) PDF downloads(187) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return