| Citation: | LUO Yu, ZHANG Zhenzhen. A Fast-lossless Compression Using Texture Prediction and Mixed Golomb Coding[J]. Journal of Electronics & Information Technology, 2018, 40(1): 137-142. doi: 10.11999/JEIT170305 | 
 
	                | ITU-T Study Group 16.23008-2-2013. ITU-T recommendation h.265[S]. Geneva, 2013. | 
| SCHWARZ H, MARPE D, and WIEGAND T. Overview of the scalable video coding extension of the h.26/avc standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(9): 1103-1120. doi: 10.1109/ TCSVT.2007. 905532. | 
| HNESH Allaeldien and DEMIREL Hasan. DWT-DCT-SVD based hybrid lossy image compression technique[C]. 2016 International Image Processing, Applications and Systems (IPAS), Hammamet, Tunisia, 2016, 11(5): 1150-1172. doi:  10.1109/TGRS.2016.2603527. | 
| LEVENIT Hrvoje, NENADI Kresimir, GALI Irena, et al. Compression parameters tuning for automatic image optimization in web applications[C]. ELMAR, 2016 International Symposium. Zadar, Groatia, 2016: 161-180. doi:  10.1109/ELMAR.2016.7731782. | 
| BRAHIMI T, BOUBCHIR L, FOURNIER R, et al. An improved multimodal signal-image compression scheme with application to natural images and biomedical data[J]. Multimedia Tools  Applications, 2016, 9(7): 1-23. doi: 10.1007 /s11042-016-3952-7. | 
| XIAO Jun, TONG Miao, ZHANG Zhu, et al. A joint color image encryption and compression scheme based on hyper- chaotic system[J]. Nonlinear Dynamics, 2016, 84(4): 2333-2356. doi:  10.1007/s11071-061-2648-x. | 
| ZHOU N, PAN S, CHENG S, et al. Image compression encryption scheme based on hyper-chaotic system and 2D compressive sensing[J]. Optics  Laser Technology, 2016, 82(2): 121-133. doi:  10.1016/j.optlastec.20. | 
| BUI Vy, CHING Lincheng, LI Dunling, et al. Comparison of lossless video and image compression codecs for medical computed tomography datasets[C]. 2016 IEEE International Conference on Big Data. Washington D.C., USA, 2016: 1123-1145. doi:  10.1109/BigData.2016.7841075. | 
| SHEN Hongda, PAN W David, and WU Dongsheng. Predictive lossless compression of regions of interest in hyper spectral images with no-data Regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 173-182. doi:  10.1109/TGRS.2016.2603527. | 
| FAN Y, SHANG Q, and ZENG X. In-block prediction-based mixed lossy and losssless reference frame recompression for next generation video encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(1): 112-124. doi:  10.1109/TCSVT.2014.2329353. | 
| SILVERIRA D, POVALA G, AMARAL L, et al. A low complexity and lossless reference frame encoder algorithm for video coding [C]. IEEE International Conference on Acoustic Speech and Signal Processing, Danvers, 2014: 7408-7412. doi:  10.1109/ICASSP.2014.6855029. | 
| GUPTE A D, AMRUTUR B, MEHENDALE M M, et al. Memory bandwidth and power reduction using lossy reference frame compression in video encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 21(20): 225-230. doi:  10.1109/TCSVT.2011.2105599. | 
| MA Y and KANG L. Adaptive granularity selection in reference picture memory compression[C]. International Conference on Mechatronics, Electronic, Industrial and Control Engineering, Shenyang, China, 2015: 1158-1161. doi:  10.2991/meic-15.2015.263. | 
| LEE Y. A new frame recompression algorithm integrated with h.264 video compression[C]. International Symposium on Circuits and Systems, Nagoya, 2007: 1621-1624. doi: 10.1109/ ISCAS.2007.378829. | 
| SAMPAIO F, ZATT B, SHAFIQUE M, et al. Content- adaptive reference frame compression based on intra-frame prediction for multi view video coding[C]. IEEE International Conference on Image Processing, Melboume, 2013: 1831-1835. doi:  10.1109.ICIP.2013.6738377. | 
| LIAN X, LIU Z, ZHOU W, et al. Lossless frame memory compression using pixel-grain prediction and dynamic order entropy coding for video technology[J]. IEEE Transactions on Circuits  Systems for Video Technology, 2016, 26(1): 223-235. doi:  10.1109/TCSVT.2015.2469572. | 
