Advanced Search
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
LUO Yu, ZHANG Zhenzhen. A Fast-lossless Compression Using Texture Prediction and Mixed Golomb Coding[J]. Journal of Electronics & Information Technology, 2018, 40(1): 137-142. doi: 10.11999/JEIT170305
Citation: LUO Yu, ZHANG Zhenzhen. A Fast-lossless Compression Using Texture Prediction and Mixed Golomb Coding[J]. Journal of Electronics & Information Technology, 2018, 40(1): 137-142. doi: 10.11999/JEIT170305

A Fast-lossless Compression Using Texture Prediction and Mixed Golomb Coding

doi: 10.11999/JEIT170305
Funds:

The National 863 Program of China (2015M16903), The Natural Science Foundation of Shaanxi Province (2014k14-02-02)

  • Received Date: 2017-04-07
  • Rev Recd Date: 2017-07-07
  • Publish Date: 2018-01-19
  • A fast-lossless compression using texture prediction and mixed golomb coding is proposed to reduce the computational complexity while keeping high compression ratio. First, the reference pixel of the current pixel is gotten by texture direction prediction, meanwhile, the pixel difference is calculated. Then, the pixel difference is entropy coded through mixed Golomb. Thus, the compression performance is improved greatly. Simulation results show that compared with lossless frame memory compression using pixel gain prediction and dynamic order entropy coding, the proposed algorithm reduce the average coding time by 36.86%. Moreover, the average compression ratio is increased slightly in the proposed algorithm.
  • loading
  • ITU-T Study Group 16.23008-2-2013. ITU-T recommendation h.265[S]. Geneva, 2013.
    SCHWARZ H, MARPE D, and WIEGAND T. Overview of the scalable video coding extension of the h.26/avc standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(9): 1103-1120. doi: 10.1109/ TCSVT.2007. 905532.
    HNESH Allaeldien and DEMIREL Hasan. DWT-DCT-SVD based hybrid lossy image compression technique[C]. 2016 International Image Processing, Applications and Systems (IPAS), Hammamet, Tunisia, 2016, 11(5): 1150-1172. doi: 10.1109/TGRS.2016.2603527.
    LEVENIT Hrvoje, NENADI Kresimir, GALI Irena, et al. Compression parameters tuning for automatic image optimization in web applications[C]. ELMAR, 2016 International Symposium. Zadar, Groatia, 2016: 161-180. doi: 10.1109/ELMAR.2016.7731782.
    BRAHIMI T, BOUBCHIR L, FOURNIER R, et al. An improved multimodal signal-image compression scheme with application to natural images and biomedical data[J]. Multimedia Tools Applications, 2016, 9(7): 1-23. doi: 10.1007 /s11042-016-3952-7.
    XIAO Jun, TONG Miao, ZHANG Zhu, et al. A joint color image encryption and compression scheme based on hyper- chaotic system[J]. Nonlinear Dynamics, 2016, 84(4): 2333-2356. doi: 10.1007/s11071-061-2648-x.
    ZHOU N, PAN S, CHENG S, et al. Image compression encryption scheme based on hyper-chaotic system and 2D compressive sensing[J]. Optics Laser Technology, 2016, 82(2): 121-133. doi: 10.1016/j.optlastec.20.
    BUI Vy, CHING Lincheng, LI Dunling, et al. Comparison of lossless video and image compression codecs for medical computed tomography datasets[C]. 2016 IEEE International Conference on Big Data. Washington D.C., USA, 2016: 1123-1145. doi: 10.1109/BigData.2016.7841075.
    SHEN Hongda, PAN W David, and WU Dongsheng. Predictive lossless compression of regions of interest in hyper spectral images with no-data Regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 173-182. doi: 10.1109/TGRS.2016.2603527.
    FAN Y, SHANG Q, and ZENG X. In-block prediction-based mixed lossy and losssless reference frame recompression for next generation video encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(1): 112-124. doi: 10.1109/TCSVT.2014.2329353.
    SILVERIRA D, POVALA G, AMARAL L, et al. A low complexity and lossless reference frame encoder algorithm for video coding [C]. IEEE International Conference on Acoustic Speech and Signal Processing, Danvers, 2014: 7408-7412. doi: 10.1109/ICASSP.2014.6855029.
    GUPTE A D, AMRUTUR B, MEHENDALE M M, et al. Memory bandwidth and power reduction using lossy reference frame compression in video encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 21(20): 225-230. doi: 10.1109/TCSVT.2011.2105599.
    MA Y and KANG L. Adaptive granularity selection in reference picture memory compression[C]. International Conference on Mechatronics, Electronic, Industrial and Control Engineering, Shenyang, China, 2015: 1158-1161. doi: 10.2991/meic-15.2015.263.
    LEE Y. A new frame recompression algorithm integrated with h.264 video compression[C]. International Symposium on Circuits and Systems, Nagoya, 2007: 1621-1624. doi: 10.1109/ ISCAS.2007.378829.
    SAMPAIO F, ZATT B, SHAFIQUE M, et al. Content- adaptive reference frame compression based on intra-frame prediction for multi view video coding[C]. IEEE International Conference on Image Processing, Melboume, 2013: 1831-1835. doi: 10.1109.ICIP.2013.6738377.
    LIAN X, LIU Z, ZHOU W, et al. Lossless frame memory compression using pixel-grain prediction and dynamic order entropy coding for video technology[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, 26(1): 223-235. doi: 10.1109/TCSVT.2015.2469572.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1698) PDF downloads(163) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return