Advanced Search
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
XIAO Leyi, OUYANG Honglin, FAN Chaodong. Multi-objective Cross Section Projection Otsu's Method Based on Memory Knetic-molecular Theory Optimization Algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(1): 189-199. doi: 10.11999/JEIT170301
Citation: XIAO Leyi, OUYANG Honglin, FAN Chaodong. Multi-objective Cross Section Projection Otsu's Method Based on Memory Knetic-molecular Theory Optimization Algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(1): 189-199. doi: 10.11999/JEIT170301

Multi-objective Cross Section Projection Otsu's Method Based on Memory Knetic-molecular Theory Optimization Algorithm

doi: 10.11999/JEIT170301
Funds:

The National Natural Science Foundation of China (61573299), The Natural Science Foundation of Hunan Province (2016JJ3125), The Foundation of Hunan Educational Committee (15C1327)

  • Received Date: 2017-04-05
  • Rev Recd Date: 2017-08-28
  • Publish Date: 2018-01-19
  • The threshold value of Q in the post process of traditional cross section projection Otsus method is a constant, which is not universal applicability for images with different noises. To solve this problem, this paper proposes a multi-objective cross section projection Otsu's method based on memory knetic-molecular theory ptimization algorithm. Based on the maximum between-class variance criterion and the maximum Peak Signal to Noise Ratio (PSNR) criterion, a multi-objective image segmentation model is established to take into account the segmentation accuracy and anti-noise capability for image segmentation by combining threshold Q with segmentation threshold T. In order to improve the efficiency of the algorithm, a memory knetic-molecular theory optimization algorithm is proposed for the multi-objective cross section projection Otsu's method by introducing the artificial memory principles into knetic-molecular theory optimization algorithm. The experimental results show that this method has significant advantages in segmentation accuracy, anti-noise capability and robustness, and is more universal applicability for images with different noises.
  • loading
  • YANG Xi, GAO Xinbo, TAO Dacheng, et al. An efficient MRF embedded level set method for image segmentation[J]. IEEE Transactions on Image Processing, 2015, 24(1): 9-21. doi: 10.1109/TIP.2014.2372615.
    SOULEYMANE B A, GAO Xinbo, DOMINIQUE G, et al. Architecture-driven level set optimization: from clustering to subpixel image segmentation[J]. IEEE Transactions on Cybernetics, 2016, 46(12): 3181-3194. doi: 10.1109/TCYB. 2015.2499206.
    SHANG Ronghua, TIAN Pingping, JIAO Licheng, et al. A spatial fuzzy clustering algorithm with kernel metric based on immune clone for SAR image segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1640-1652. doi: 10.1109/JSTARS.2016. 2516014.
    CARLOS F M C, ALFONSO M U, and GERARDO S. Unsupervised morphological segmentation based on affixality measurements[J]. Pattern Recognition Letters, 2016, 84(1): 127-133. doi: 10.1016/j.patrec.2016.09.001
    YANG Jian, HE Yuhong, and JOHN C. Region merging using local spectral angle thresholds: A more accurate method for hybrid segmentation of remote sensing images[J]. Remote Sensing of Environment, 2017, 190(1): 137-148. doi: 10.1016/j.rse.2016.12.011.
    SALIMA O and ABDELMALIK T A. Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study[J]. Expert Systems with Applications, 2016, 55(C): 566-584. doi: 10.1016/j.eswa. 2016.02.024.
    申铉京, 刘翔, 陈海鹏. 基于多阈值Otsu准则的阈值分割快速计算[J]. 电子与信息学报, 2017, 39(1): 144-149. doi: 10.11999/JEIT160248.
    SHEN Xuanjing, LIU Xiang, and CHEN Haipeng. Fast computation of threshold based on multi-threshold Otsu criterion[J]. Journal of Electronics Information Technology, 2017, 39(1): 144-149. doi: 10.11999/JEIT160248.
    刘健庄, 栗文清. 灰度图像的二维Otsu 自动阈值分割法[J]. 自动化学报, 1993, 19(1): 101-105. doi: 10.16383/j.aas.1993. 01.015.
    LIU Jianzhuang and LI Wenqing. Automatic thresholding of gray-level pictures using two-dimension Otsu method[J]. Acta Automatica Sinica, 1993, 19(1): 101-105. doi: 10.16383/j.aas. 1993.01.015.
    景晓军, 李剑峰, 刘郁林. 一种基于三维最大类间方差的图像分割算法[J]. 电子学报, 2003, 31(9): 1281-1285. do: 10.3321/ j.issn:0372-2112.2003.09.001.
    JING Xiaojun, LI Jianfeng, and LIU Yulin. Image segmentation based on 3-D maximum between-cluster variance[J]. Acta Electronica Sinica, 2003, 31(9): 1281-1285. doi: 10.3321/j.issn:0372-2112.2003.09.001.
    范九伦, 赵凤, 张雪峰. 三维Otsu 阈值分割方法的递推算法[J]. 电子学报, 2007, 35(7): 1398-1402. doi: 10.3321/j.issn: 0372-2112.2007.07.034.
    FAN Jiulun, ZHAO Feng, and ZHANG Xuefeng. Recursive algorithm for three-dimensional Otsus thresholding segmentation method[J]. Acta Electronica Sinica, 2007, 35(7): 1398-1402. doi: 10.3321/j.issn:0372-2112.2007.07.034.
    STHITPATTANAPONGSA P and SRINARK T. An equivalent 3D Otsus thresholding method [C]. The 5th Pacific Rim Symposium on Image and Video Technology. Gwangju, South Korea, 2011, 358-369. doi: 10.1007/978-3- 642-25367-6_32.
    范朝冬, 欧阳红林, 肖乐意. 基于空间截面投影的Otsu 图像分割算法[J]. 通信学报, 2014, 35(5): 70-78. doi: 10.3969/ j.issn.1000-436x.2014.05.010.
    FAN Chaodong, OUYANG Honglin, and XIAO Leyi. Otsu thresholding method based on projection of cross section for image segmentation[J]. Journal on Communications, 2014, 35(5): 70-78. doi: 10.3969/j.issn.1000-436x.2014.05.010.
    FAN Chaodong, OUYANG Honglin, ZHANG Yingjie, et al. Optimal multilevel thresholding using molecular kinetic theory optimization algorithm[J]. Applied Mathematics and Computation, 2014, 239(15): 391-408. doi: 10.1016/j.amc. 2014.04.103.
    范朝冬, 张英杰, 欧阳红林, 等. 基于改进斜分Otsu 法的回转窑火焰图像分割[J]. 自动化学报, 2014, 40(11): 2480-2489. doi: 10.3724/SP.J.1004.2014.02480.
    FAN Chaodong, ZHANG Yingjie, OUYANG Honglin, et al. Improved Otsu method based on histogram oblique segmentation for segmentation of rotary kiln flame image[J]. Acta Automatica Sinica, 2014, 40(11): 2480-2489. doi: 10.3724/SP.J.1004.2014.02480.
    FAN Chaodong, REN Ke, ZHANG Yingjie, et al. Optimal multilevel thresholding based on molecular kinetic theory optimization algorithm and line intercept histogram[J]. Journal of Central South University, 2016, 23(4): 880-889. doi: 10.1007/s11771-016-3135-8.
    范朝冬, 章兢, 易灵芝. M-精英协同进化分子动理论优化算法[J]. 通信学报, 2015, 36(7): 144-152. doi: 10.11959/j.issn. 1000-436x.2015200.
    FAN Chaodong, ZHANG Jing, and YI Lingzhi. M-elite coevolutionary kinetic-molecular theory optimization algorithm[J]. Journal on Communications, 2015, 36(7): 144-152. doi: 10.11959/j.issn.1000-436x.2015200.
    黄光球, 李涛, 陆秋琴. 人工记忆优化算法[J]. 系统工程理论与实践, 2014, 34(11): 2900-2912. doi: 10.12011/1000- 6788(2014)11-2900.
    HUANG Guangqiu, LI Tao, and LU Qiuqin. Artificial memory-based optimization [J]. Systems Engineering-Theory Practice, 2014, 34(11): 2900-2912. doi: 10.12011/1000- 6788(2014)11-2900.
    李牧东, 赵辉, 翁兴伟, 等. 基于最优高斯随机游走和个体筛选策略的差分进化算法[J]. 控制与决策, 2016, 31(8): 1379-1386. doi: 10.13195/j.kzyjc.2015.0779
    LI Mudong, ZHAO Hui, WENG Xingwei, et al. Differential evolution based on optimal Gaussian random walk and individual selection strategies[J]. Control and Decision, 2016, 31(8): 1379-1386. doi: 10.13195/j.kzyjc.2015.0779.
    张新明, 郑延斌, 张慧云. 应用混沌多目标规划理论融合的图像分割[J]. 小型微型计算机系统, 2010, 31(7): 1416-1420.
    ZHANG Xinming, ZHENG Yanbin, and ZHANG Huiyun. Image segmentation based on combining chaos and multiobjective programming theory[J]. Journal of Chinese Computer Systems, 2010, 31(7): 1416-1420.
    何林波, 蒋定德, 仲维佳. 一种基于能效与频效的路由优化算法[J]. 电子学报, 2016, 44(10): 2314-2322. doi: 10.3969/j.issn. 0372-2112.2016.10.005.
    HE Linbo, JIANG Dingde, and ZHONG Weijia. An engergy efficiency and frequency efficiency based routing optimization algorithm[J]. Acta Electronica Sinica, 2016, 44(10): 2314-2322. doi: 10.3969/j.issn.0372-2112.2016.10.005.
    EESA A S, ORMAN Z, and BRIFCANI A M A. A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems[J]. Expert Systems with Application, 2015, 42(5): 2670-2679. doi: 10.1016/j.eswa.2014.11.009.
    ZHU Guangyu and ZHANG Weibo. Optimal foraging algorithm for global optimization[J]. Applied Soft Computing, 2017, 51: 294-313. doi: 10.1016/j.asoc.2016.11. 047.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1462) PDF downloads(210) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return