Citation: | ZHOU Lijun, OUYANG Shan, LIAO Guisheng, JIN Liangnian. Target Reconstruction Method for Weak Signal Compensation Based on Internal Resonances[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2844-2850. doi: 10.11999/JEIT170287 |
WALTON G, LATO M, ANSCHUTZ H, et al. Non-invasive detection of fractures, fracture zones, and rock damage in a hard rock excavation-experience from the Aspo Hard Rock laboratory in Sweden[J]. Engineering Geology, 2015, 196: 210-221. doi: 10.1016/j.enggeo.2015.07.010.
|
DANIELS D J. Ground Penetrating Radar[M]. 2nd Ed., London: The Institution of Electrical Engineers, 2004: 4-5.
|
SUN M, BASTARD C, PINEL N, et al. Road surface layers geometric parameters estimation by ground penetrating radar using estimation of signal parameters via rotational invariance techniques method[J]. IET Radar, Sonar Navigation, 2016, 10(3): 603-609. doi: 10.1049/iet-rsn.2015. 0374.
|
TETIK E and AKDUMAN I. 3D imaging of dielectric objects buried under a rough surface by using CSI[J]. International Journal of Antennas and Propagation, 2015, 2015: 1-8. doi; 10.1155/2015/179304.
|
CATAPANO I, CROCCO L, and ISERNIA T. On simple methods for shape reconstruction of unknown scatterers[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(5): 1431-1436. doi: 10.1109/TAP.2007.895563.
|
VALERIO G, SOLDOVIERI F, BARONE P M, et al. Shape reconstruction of scatterers by suitable inverse processing of GPR data[C]. The 6th European Conference on Antennas and Propagation, Prague, 2012: 2209-2211. doi: 10.1109/ EuCAP.2012.6206268.
|
NOMURA Y, KATO N, NAGANUMA Y, et al. A geometrical analysis of buried flat-plates on ground penetrating radar images[C]. IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, 2011: 3317-3322. doi: 10.1109/ICSMC.2011.6084181.
|
SUGAK V and SUGAK A. Phase spectrum of signals in ground-penetrating radar applications[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48(4): 1760-1767. doi: 10.1109/TGRS.2009.2036163.
|
HUUSKONEN E, MIKHNEV V, and OLKKONEN M. Discrimination of buried objects in impulse GPR using phase retrieval technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1001-1007. doi: 10.1109/TGRS. 2014.2331427.
|
SOLDOVIERI F, BRANCACCIO A, LEONE G, et al. Shape reconstruction of perfectly conducting objects by multiview experimental data[J]. IEEE Transactions on Geoscience Remote Sensing, 2005, 43(1): 65-71. doi: 10.1109/TGRS.2004. 839432.
|
MIKHNEV V, OLKKONEN M, and HUUSKONEN E. Identification of buried objects in GPR using phase information extracted from transient response[C]. Proceedings of the 9th European Radar Conference, Amsterdam, 2012: 322-325.
|
NI X and HUO X. Statistical interpretation of the importance of phase information in signal and image reconstruction[J]. Statistics Probability Letters, 2007, 77: 447-454. doi: 10.1016/j.spl.2006.08.025.
|
PARRELLA G, HAJNSEK I, and PAPATHANASSIOU K P. On the interpretation of polarimetric phase differences in SAR data over land ice[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 192-196. doi: 10.1109/LGRS. 2015.2505172.
|
ZHOU Lijun, OUYANG Shan, LIAO Guisheng, et al. A novel reconstruction method based on changes in phase for subsurface large sloped dielectric target using GPR[J]. Journal of Applied Geophysics, 2016, 134: 36-43. doi: 10.1016/j.jappgeo.2016.08.013.
|
SKOLNIK M. Radar Handbook[M]. 3rd Ed., New York: Mc Graw Hill, 2008: 3.13-3.15.
|
SCHOFIELD J, DANIELS D, and HAMMERTON P. A multiple migration and stacking algorithm designed for land mine detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6983-6988. doi: 10.1109/ TGRS.2014.2306325.
|
WANG Z, ZHANG S, and WYROWSKI F. Modeling laser beam propagation through components with internal multiple reflections[C]. Components and Packaging for Laser Systems, California, 2015: 16-1-16-8. doi: 10.1117/12. 2079562.
|
LU Y and DO M N. Multidimensional directional filter banks and surfacelets[J]. IEEE Transactions on Image Processing, 2007, 16(4): 918-931. doi: 10.1109/TIP.2007.891785.
|
1. | 张天骐,周琳,梁先明,徐伟. 基于Blob-Harris特征区域和NSCT-Zernike的鲁棒水印算法. 电子与信息学报. 2021(07): 2038-2045 . ![]() | |
2. | 陆金江. 基于深度卷积神经网络的模糊字迹图像识别方法. 佳木斯大学学报(自然科学版). 2021(05): 42-46 . ![]() | |
3. | 黄媛. 数字视频图像加密域水印嵌入鲁棒性评估仿真. 计算机与数字工程. 2018(05): 1012-1016+1057 . ![]() | |
4. | 石慧,冯斌,王相海,李明楚,宋传鸣. 用于盗版追踪的格雷码加密域可逆水印研究. 中国图象图形学报. 2018(11): 1635-1651 . ![]() | |
5. | 石红芹,余鹰,王艳. 基于NSCT和压缩感知的数字图像水印算法. 包装工程. 2017(11): 176-180 . ![]() | |
6. | 邱育桥. 基于智能图像视觉的船舱内部监控与识别. 舰船科学技术. 2017(04): 178-180 . ![]() | |
7. | 孙丽,高娜. 密文域下3D激光雷达图像认证方法研究. 激光杂志. 2017(07): 151-155 . ![]() | |
8. | 陈建辉. 混合云环境下基于椭圆曲线加密的隐私保护模型. 微电子学与计算机. 2017(08): 128-132 . ![]() | |
9. | 丛红艳. 基于多帧二维动画图像的三维自动生成技术. 现代电子技术. 2017(18): 98-100 . ![]() | |
10. | 肖迪,马青青,王兰,向艳萍. 基于稀疏表示的云协助安全数字水印技术. 信息网络安全. 2017(01): 1-7 . ![]() | |
11. | 刘艳波. 基于JPEG图像的改进小波变换信息隐藏算法. 北华大学学报(自然科学版). 2017(05): 697-700 . ![]() | |
12. | 吴秋玲,吴蒙. 基于小波变换的语音信息隐藏新方法. 电子与信息学报. 2016(04): 834-840 . ![]() | |
13. | 姚军财,刘贵忠. 一种基于人眼对比度敏感视觉特性的图像自适应量化方法. 电子与信息学报. 2016(05): 1202-1210 . ![]() |