Advanced Search
Volume 39 Issue 12
Dec.  2017
Turn off MathJax
Article Contents
Xiao Di, Deng Mi-Mi, Zhang Yu-Shu. Robust and Separable Watermarking Algorithm in Encrypted Image Based on Compressive Sensing[J]. Journal of Electronics & Information Technology, 2015, 37(5): 1248-1254. doi: 10.11999/JEIT141017
Citation: ZHOU Lijun, OUYANG Shan, LIAO Guisheng, JIN Liangnian. Target Reconstruction Method for Weak Signal Compensation Based on Internal Resonances[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2844-2850. doi: 10.11999/JEIT170287

Target Reconstruction Method for Weak Signal Compensation Based on Internal Resonances

doi: 10.11999/JEIT170287
Funds:

The National Natural Science Foundation of China (61371186, 61162007), The Guangxi Natural Science Foundation (2013GXNSFFA019004)

  • Received Date: 2017-04-01
  • Rev Recd Date: 2017-09-15
  • Publish Date: 2017-12-19
  • The geometric characteristics (such as position, shape, size, etc.) of a large size target such as the broken or sinking subgrade are particularly important in engineering applications and municipal infrastructure maintenance. Due to the attenuation of the electromagnetic wave inside the target, the reflection from back surface of the target is too weak to be detected. In this paper, a target reconstruction algorithm for weak signal compensation based on internal resonances is proposed. Due to the limited target boundary, the electromagnetic wave will produce multiple reflections along the propagation direction inside the target. This phenomenon is reflected as periodic resonances in the recording signal. The relationship between the resonant period and the target width is analyzed and the position of the back surface of the target is estimated. The virtual image around the front surface of target is removed by means of phase difference. The whole target shape is reconstructed according to the front surface and back surface of the target. The experimental results verify the effectiveness of the proposed method and the robustness to noise.
  • WALTON G, LATO M, ANSCHUTZ H, et al. Non-invasive detection of fractures, fracture zones, and rock damage in a hard rock excavation-experience from the Aspo Hard Rock laboratory in Sweden[J]. Engineering Geology, 2015, 196: 210-221. doi: 10.1016/j.enggeo.2015.07.010.
    DANIELS D J. Ground Penetrating Radar[M]. 2nd Ed., London: The Institution of Electrical Engineers, 2004: 4-5.
    SUN M, BASTARD C, PINEL N, et al. Road surface layers geometric parameters estimation by ground penetrating radar using estimation of signal parameters via rotational invariance techniques method[J]. IET Radar, Sonar Navigation, 2016, 10(3): 603-609. doi: 10.1049/iet-rsn.2015. 0374.
    TETIK E and AKDUMAN I. 3D imaging of dielectric objects buried under a rough surface by using CSI[J]. International Journal of Antennas and Propagation, 2015, 2015: 1-8. doi; 10.1155/2015/179304.
    CATAPANO I, CROCCO L, and ISERNIA T. On simple methods for shape reconstruction of unknown scatterers[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(5): 1431-1436. doi: 10.1109/TAP.2007.895563.
    VALERIO G, SOLDOVIERI F, BARONE P M, et al. Shape reconstruction of scatterers by suitable inverse processing of GPR data[C]. The 6th European Conference on Antennas and Propagation, Prague, 2012: 2209-2211. doi: 10.1109/ EuCAP.2012.6206268.
    NOMURA Y, KATO N, NAGANUMA Y, et al. A geometrical analysis of buried flat-plates on ground penetrating radar images[C]. IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, 2011: 3317-3322. doi: 10.1109/ICSMC.2011.6084181.
    SUGAK V and SUGAK A. Phase spectrum of signals in ground-penetrating radar applications[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48(4): 1760-1767. doi: 10.1109/TGRS.2009.2036163.
    HUUSKONEN E, MIKHNEV V, and OLKKONEN M. Discrimination of buried objects in impulse GPR using phase retrieval technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1001-1007. doi: 10.1109/TGRS. 2014.2331427.
    SOLDOVIERI F, BRANCACCIO A, LEONE G, et al. Shape reconstruction of perfectly conducting objects by multiview experimental data[J]. IEEE Transactions on Geoscience Remote Sensing, 2005, 43(1): 65-71. doi: 10.1109/TGRS.2004. 839432.
    MIKHNEV V, OLKKONEN M, and HUUSKONEN E. Identification of buried objects in GPR using phase information extracted from transient response[C]. Proceedings of the 9th European Radar Conference, Amsterdam, 2012: 322-325.
    NI X and HUO X. Statistical interpretation of the importance of phase information in signal and image reconstruction[J]. Statistics Probability Letters, 2007, 77: 447-454. doi: 10.1016/j.spl.2006.08.025.
    PARRELLA G, HAJNSEK I, and PAPATHANASSIOU K P. On the interpretation of polarimetric phase differences in SAR data over land ice[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 192-196. doi: 10.1109/LGRS. 2015.2505172.
    ZHOU Lijun, OUYANG Shan, LIAO Guisheng, et al. A novel reconstruction method based on changes in phase for subsurface large sloped dielectric target using GPR[J]. Journal of Applied Geophysics, 2016, 134: 36-43. doi: 10.1016/j.jappgeo.2016.08.013.
    SKOLNIK M. Radar Handbook[M]. 3rd Ed., New York: Mc Graw Hill, 2008: 3.13-3.15.
    SCHOFIELD J, DANIELS D, and HAMMERTON P. A multiple migration and stacking algorithm designed for land mine detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6983-6988. doi: 10.1109/ TGRS.2014.2306325.
    WANG Z, ZHANG S, and WYROWSKI F. Modeling laser beam propagation through components with internal multiple reflections[C]. Components and Packaging for Laser Systems, California, 2015: 16-1-16-8. doi: 10.1117/12. 2079562.
    LU Y and DO M N. Multidimensional directional filter banks and surfacelets[J]. IEEE Transactions on Image Processing, 2007, 16(4): 918-931. doi: 10.1109/TIP.2007.891785.
  • Cited by

    Periodical cited type(13)

    1. 张天骐,周琳,梁先明,徐伟. 基于Blob-Harris特征区域和NSCT-Zernike的鲁棒水印算法. 电子与信息学报. 2021(07): 2038-2045 . 本站查看
    2. 陆金江. 基于深度卷积神经网络的模糊字迹图像识别方法. 佳木斯大学学报(自然科学版). 2021(05): 42-46 .
    3. 黄媛. 数字视频图像加密域水印嵌入鲁棒性评估仿真. 计算机与数字工程. 2018(05): 1012-1016+1057 .
    4. 石慧,冯斌,王相海,李明楚,宋传鸣. 用于盗版追踪的格雷码加密域可逆水印研究. 中国图象图形学报. 2018(11): 1635-1651 .
    5. 石红芹,余鹰,王艳. 基于NSCT和压缩感知的数字图像水印算法. 包装工程. 2017(11): 176-180 .
    6. 邱育桥. 基于智能图像视觉的船舱内部监控与识别. 舰船科学技术. 2017(04): 178-180 .
    7. 孙丽,高娜. 密文域下3D激光雷达图像认证方法研究. 激光杂志. 2017(07): 151-155 .
    8. 陈建辉. 混合云环境下基于椭圆曲线加密的隐私保护模型. 微电子学与计算机. 2017(08): 128-132 .
    9. 丛红艳. 基于多帧二维动画图像的三维自动生成技术. 现代电子技术. 2017(18): 98-100 .
    10. 肖迪,马青青,王兰,向艳萍. 基于稀疏表示的云协助安全数字水印技术. 信息网络安全. 2017(01): 1-7 .
    11. 刘艳波. 基于JPEG图像的改进小波变换信息隐藏算法. 北华大学学报(自然科学版). 2017(05): 697-700 .
    12. 吴秋玲,吴蒙. 基于小波变换的语音信息隐藏新方法. 电子与信息学报. 2016(04): 834-840 . 本站查看
    13. 姚军财,刘贵忠. 一种基于人眼对比度敏感视觉特性的图像自适应量化方法. 电子与信息学报. 2016(05): 1202-1210 . 本站查看

    Other cited types(30)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (902) PDF downloads(217) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return