| Citation: | Zhang Meng, Xu Maozhi, Hu Zhi, Hou Ying. On Parameterized Families of Elliptic Curves with Low Embedding Degrees[J]. Journal of Electronics & Information Technology, 2018, 40(1): 35-41. doi: 10.11999/JEIT170261 | 
 
	                | JOUX A. A one round protocol for tripartite Diffie- Hellman[J]. Journal of Cryptology, 2004, 17(4): 385-393. doi:  10.1007/s00145-004-0312-y. | 
| MENEZES A J, OKAMOTO T, and VANSTONE S A. Reducing elliptic curve logarithms to logarithms in a finite field[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1639-1646. doi:  10.1109/18.259647. | 
| BONEH D and FRANKLIN M K. Identity-based encryption from the Weil pairing[C]. International Cryptology Conference on Advances in Cryptology, Springer-Verlag, 2001: 213-229. | 
| PATERSON K G. ID-based signatures from pairings on elliptic curves[J]. Electronics Letters, 2002, 38(18): 1025-1026. | 
| GOPAL P V S S N and Reddy P V. Efficient ID-based key-insulated signature scheme with batch verifications using bilinear pairings over elliptic curves[J]. Journal of Discrete Mathematical Sciences  Cryptography, 2015, 18(4): 385-402. doi:  10.1080/09720529.2014.1001586. | 
| ROBERT O. On Constructing families of pairing-friendly elliptic curves with variable discriminant[C]. Progress in Cryptology-Indocrypt 2011, International Conference on Cryptology in India, Chennai, India, 2011: 310-319. | 
| FOTIADIS G and KONSTANTINOU E. More sparse families of pairing-friendly elliptic curves[C]. Cryptology and Network Security, Springer International Publishing, 2014: 384-399. | 
| FREEMAN D, SCOTT M, and TESKE E. A taxonomy of pairing-friendly elliptic curves[J]. Journal of Cryptology, 2010, 23(2): 224-280. doi:  10.1007/s00145-009-9048-z. | 
| LE D P, MRABET N E, and TAN C H. On near prime-order elliptic curves with small embedding degrees[C]. Algebraic Informatics. Springer International Publishing, 2015: 140-151. [10] LEE H S and PARK C M. Constructing pairing-friendly curves with variable CM discriminant[J]. Bulletin of the Korean Mathematical Society, 2012, 49(1): 75-88. doi:  10.4134/BKMS.2012.49.1.075. | 
| TANAKA S and NAKAMULA K. Constructing pairing- friendly elliptic curves using factorization of cyclotomic polynomials[C]. Pairing-Based Cryptography-Pairing 2008, Second International Conference, Egham, UK, 2008: 136-145. | 
| YOON K. A new method of choosing primitive elements for Brezing-Weng families of pairing- friendly elliptic curves[J]. Journal of Mathematical Cryptology, 2015, 9(1):1-9. | 
| LEE H S and LEE P R. Families of pairing-friendly elliptic curves from a polynomial modification of the Dupont- Enge-Morain method[J]. Applied Mathematics  Information Sciences, 2016, 10(2): 571-580. doi:  10.18576/amis/100218. | 
| YASUDA T, TAKAGI T, and SAKURAI K. Constructing pairing-friendly elliptic curves using global number fields[C]. Third International Symposium on Computing and Networking, 2015: 477-483. | 
| OKANO K. Note on families of pairing-friendly elliptic curves with small embedding degree[J]. JSIAM Letters, 2016: 61-64. doi:  10.14495/jsiaml.8.61. | 
| LI L. Generating pairing-friendly elliptic curves with fixed embedding degrees[J]. Science China Information Sciences, 2017, 60(11): 119101. doi:  10.1007/s11432-016-0412-0. | 
| ATKIN A O L and MORAIN F. Elliptic curves and primality proving[J]. Mathematics of Computation, 1997, 61(203): 29-68. doi:  10.1090/S0025-5718-1993-1199989-X. | 
| GALBRAITH S D, MCKEE J F, and VALENCA P C. Ordinary abelian varieties having small embedding degree[J]. Finite Fields  Their Applications, 2007, 13(4): 800-814. doi:  10.1016/j.ffa.2007.02.003. | 
| ZHANG M, HU Z, and XU M. On constructing parameterized families of pairing-friendly elliptic curves with\rho=1[C]. International Conference on Information Security and Cryptology, Springer, Cham, 2016: 403-415. | 
| FOTIADIS G and KONSTANTINOU E. On the efficient generation of generalized MNT elliptic curves[C]. Algebraic Informatics, Springer Berlin Heidelberg, 2013: 147-159. | 
