Advanced Search
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Zhang Meng, Xu Maozhi, Hu Zhi, Hou Ying. On Parameterized Families of Elliptic Curves with Low Embedding Degrees[J]. Journal of Electronics & Information Technology, 2018, 40(1): 35-41. doi: 10.11999/JEIT170261
Citation: Zhang Meng, Xu Maozhi, Hu Zhi, Hou Ying. On Parameterized Families of Elliptic Curves with Low Embedding Degrees[J]. Journal of Electronics & Information Technology, 2018, 40(1): 35-41. doi: 10.11999/JEIT170261

On Parameterized Families of Elliptic Curves with Low Embedding Degrees

doi: 10.11999/JEIT170261
Funds:

The National Natural Science Foundation of China (61272499, 61472016, 61672059, 61602526), The National Key RD Program of China (2017YFB0802000)

  • Received Date: 2017-03-29
  • Rev Recd Date: 2017-10-20
  • Publish Date: 2018-01-19
  • Pairing-friendly elliptic curves play a vital role in pairing-based cryptography. The constructionof such curves not only influences the implementation efficiency, but concerns the security of system. Though many methods for constructing such curves are introduced, most of which rely on exhaustive search. In this paper, a new systematic method is proposed for constructing such curves which converts the problem to solving equation systems, instead of exhaustive searching. The utility of the method is demonstrated by surveying such elliptic curves with embedding degree 5, 8, 10 and 12, and all kinds of families can be explained via the proposed method including complete families, complete families with variable discriminant and sparse families. Specifically, a new family of elliptic curves is found.
  • loading
  • JOUX A. A one round protocol for tripartite Diffie- Hellman[J]. Journal of Cryptology, 2004, 17(4): 385-393. doi: 10.1007/s00145-004-0312-y.
    MENEZES A J, OKAMOTO T, and VANSTONE S A. Reducing elliptic curve logarithms to logarithms in a finite field[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1639-1646. doi: 10.1109/18.259647.
    BONEH D and FRANKLIN M K. Identity-based encryption from the Weil pairing[C]. International Cryptology Conference on Advances in Cryptology, Springer-Verlag, 2001: 213-229.
    PATERSON K G. ID-based signatures from pairings on elliptic curves[J]. Electronics Letters, 2002, 38(18): 1025-1026.
    GOPAL P V S S N and Reddy P V. Efficient ID-based key-insulated signature scheme with batch verifications using bilinear pairings over elliptic curves[J]. Journal of Discrete Mathematical Sciences Cryptography, 2015, 18(4): 385-402. doi: 10.1080/09720529.2014.1001586.
    ROBERT O. On Constructing families of pairing-friendly elliptic curves with variable discriminant[C]. Progress in Cryptology-Indocrypt 2011, International Conference on Cryptology in India, Chennai, India, 2011: 310-319.
    FOTIADIS G and KONSTANTINOU E. More sparse families of pairing-friendly elliptic curves[C]. Cryptology and Network Security, Springer International Publishing, 2014: 384-399.
    FREEMAN D, SCOTT M, and TESKE E. A taxonomy of pairing-friendly elliptic curves[J]. Journal of Cryptology, 2010, 23(2): 224-280. doi: 10.1007/s00145-009-9048-z.
    LE D P, MRABET N E, and TAN C H. On near prime-order elliptic curves with small embedding degrees[C]. Algebraic Informatics. Springer International Publishing, 2015: 140-151. [10] LEE H S and PARK C M. Constructing pairing-friendly curves with variable CM discriminant[J]. Bulletin of the Korean Mathematical Society, 2012, 49(1): 75-88. doi: 10.4134/BKMS.2012.49.1.075.
    TANAKA S and NAKAMULA K. Constructing pairing- friendly elliptic curves using factorization of cyclotomic polynomials[C]. Pairing-Based Cryptography-Pairing 2008, Second International Conference, Egham, UK, 2008: 136-145.
    YOON K. A new method of choosing primitive elements for Brezing-Weng families of pairing- friendly elliptic curves[J]. Journal of Mathematical Cryptology, 2015, 9(1):1-9.
    LEE H S and LEE P R. Families of pairing-friendly elliptic curves from a polynomial modification of the Dupont- Enge-Morain method[J]. Applied Mathematics Information Sciences, 2016, 10(2): 571-580. doi: 10.18576/amis/100218.
    YASUDA T, TAKAGI T, and SAKURAI K. Constructing pairing-friendly elliptic curves using global number fields[C]. Third International Symposium on Computing and Networking, 2015: 477-483.
    OKANO K. Note on families of pairing-friendly elliptic curves with small embedding degree[J]. JSIAM Letters, 2016: 61-64. doi: 10.14495/jsiaml.8.61.
    LI L. Generating pairing-friendly elliptic curves with fixed embedding degrees[J]. Science China Information Sciences, 2017, 60(11): 119101. doi: 10.1007/s11432-016-0412-0.
    ATKIN A O L and MORAIN F. Elliptic curves and primality proving[J]. Mathematics of Computation, 1997, 61(203): 29-68. doi: 10.1090/S0025-5718-1993-1199989-X.
    GALBRAITH S D, MCKEE J F, and VALENCA P C. Ordinary abelian varieties having small embedding degree[J]. Finite Fields Their Applications, 2007, 13(4): 800-814. doi: 10.1016/j.ffa.2007.02.003.
    ZHANG M, HU Z, and XU M. On constructing parameterized families of pairing-friendly elliptic curves with\rho=1[C]. International Conference on Information Security and Cryptology, Springer, Cham, 2016: 403-415.
    FOTIADIS G and KONSTANTINOU E. On the efficient generation of generalized MNT elliptic curves[C]. Algebraic Informatics, Springer Berlin Heidelberg, 2013: 147-159.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1209) PDF downloads(143) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return