Advanced Search
Volume 39 Issue 12
Dec.  2017
Turn off MathJax
Article Contents
WEN Wei, CAO Xuefei, CHEN Bo, HAN Xun, ZHANG Xuefeng, WANG Penghui, LIU Hongwei. Infinite Max-margin Linear Discriminant Projection Model[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2795-2802. doi: 10.11999/JEIT170256
Citation: WEN Wei, CAO Xuefei, CHEN Bo, HAN Xun, ZHANG Xuefeng, WANG Penghui, LIU Hongwei. Infinite Max-margin Linear Discriminant Projection Model[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2795-2802. doi: 10.11999/JEIT170256

Infinite Max-margin Linear Discriminant Projection Model

doi: 10.11999/JEIT170256
Funds:

The National Science Fund for Distinguished Young Scholars (61525105), The National Natural Science Foundation of China (61201292, 61322103, 61372132), The Program for New Century Excellent Talents in University (FANEDD-201156), The Natural Science Basic Research Plan in Shaanxi Province (2016JQ6048), The Avaation Science Fund (20142081009), Shanghai Aerospca Science, Technology Innovation Fund (SAST2015009), The Key Laboratory Fund of RF Integrated Laboratory in Avionics System

  • Received Date: 2017-03-29
  • Rev Recd Date: 2017-09-21
  • Publish Date: 2017-12-19
  • An infinite Max-Margin Linear Discriminant Projection (iMMLDP) model is developed to deal with the classification problem on multimodal distributed high-dimensional data. Different from global projection, iMMLDP divides the data into a set of local regions via Dirichlet Process (DP) mixture model and meanwhile learns a linear Max-Margin Linear Discriminant Projection (MMLDP) classifier in each local region. By assembling these local classifiers, a flexible nonlinear classifier is constructed. Under this framework, iMMLDP combines dimensionality reduction, clustering and supervised classification in a principled way, therefore, an underlying structure of the data could be uncovered. As a result, the model can handle the classification of data with global nonlinear structure, especially the data with multi-modally distributed structure. With the help of Bayesian nonparametric prior, the model selection problem (e.g. the number of local regions) can be avoided. The proposed model is implemented on synthesized and real-world data, including multi-modally distributed datasets and measured radar high range resolution profile (HRRP) data, to validate its efficiency and effectiveness.
  • loading
  • DUDA R, HART P, and STORK D. Pattern Classification (2nd ed.)[M]. New York, Wiley Interscience, 2000: 106-113.
    郁道银, 王悦行, 陈晓冬, 等. 基于随机投影和稀疏表示的追踪算法[J]. 电子与信息学报, 2016, 38(7): 1602-1608. doi: 10.11999/JEIT151064.
    YU Daoyin, WANG Yuexing, CHEN Xiaodong, et al. Visual tracking based on random projection and sparse representation[J]. Journal of Electronics Information Technology, 2016, 38(7): 1602-1608. doi: 10.11999/JEIT 151064.
    SWETS D and WENG J. Using discriminant eigenfeatures for image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831-836. doi: 10.1109/34.531802.
    ETEMAD K and CHELLAPA R. Discriminant analysis for recognition of human face images[J]. Journal of the Optical Society of America A, 1997, 14(8): 1724-1733. doi: 10.1364 /JOSAA.14.001724.
    FISHER R. The use of multiple measurements in taxonomic problems [J]. Annals of Eugenics, 1936, 7(2): 179188 doi: 10.1111/j.1469-1809.1936.tb02137.
    CHEN B, ZHANG H, ZHANG X, et al. Max-margin discriminant projection via data augmentation[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(7): 1964-1976. doi: 10.1109/TKDE.2015.2397444.
    NIKOLAOS G, VASILEIOS M, and IOANNIS K. Mixture Subclass discriminant analysis[J]. IEEE Signal Processing Letter, 2011, 18(5): 319-322. doi: 10.1109/LSP.2011. 2127474.
    NIKOLAOS G, VASILEIOS M, and IOANNIS K. Mixture subclass discriminant analysis link to restricted Gaussian model and other generalizations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(1): 8-21. doi: 10.1109/TNNLS.2012.2216545.
    郭继昌, 张帆, 王楠. 基于Fisher约束和字典对的图像分类 [J] 电子与信息学报, 2017, 39(2): 270-277. doi: 10.11999/ JEIT160329.
    GUO Jichang, ZHANG Fan, and WANG Nan. Image classification based on Fisher constraint and dictionary pair [J]. Journal of Electronics Information Technology, 2017, 39(2): 270-277. doi: 10.11999/JEIT160329.
    GONEN M. Bayesian supervised dimensionality reduction [J]. IEEE Transactions on Cybernetics, 2013, 4(6): 2179-2189. doi: 10.1109/TCYB.2013.2245321.
    SHAHBABA B and NEAL R. Nonlinear models using Dirichlet process mixtures[J]. The Journal of Machine Learning Research, 2009, 10(4): 1829-1850.
    文伟, 曹雪菲, 张学峰, 等. 一种基于多极化散射机理的极化SAR图像舰船目标检测方法[J]. 电子与信息学报, 2017, 39(1): 103-109. doi: 10.11999/JEIT160204.
    WEN Wei, CAO Xuefei, ZHANG Xuefeng, et al. PolSAR ship detection method based on multiple polarimetric scattering mechanisms[J]. Journal of Electronics Information Technology, 2017, 39(1): 103-109. doi: 10.11999 /JEIT160204.
    POLSON N G and SCOTT S L. Data augmentation for support vector machines[J]. Bayesian Analysis, 2011, 6(1): 1-24. doi: 10.1214/11-BA601.
    SETHURAMAN J. A constructive definition of Dirichlet priors[J]. Statistica Sinica, 1994, 4(2): 639-650.
    HANNAH L A, BLEI D M, and POWELL W B. Dirichlet process mixtures of generalized linear models[J]. Journal of Machine Learning Research, 2011, 12: 1923-1953.
    RIFKIN R and KLAUTAU A. In defense of one-vs-all classification[J]. Journal of Machine Learning Research, 2004, 5(1): 101-141.
    DU L, LIU H W, BO Z, et al. Radar HRRP statistical recognition: Parametric model and model selection[J]. IEEE Transactions on Signal Processing, 2008, 56 (5): 1931-1943. doi: 10.1109/TSP.2007.912283.
    张学峰, 陈渤, 王鹏辉, 等. 无限最大间隔Beta过程因子分析模型[J]. 西安电子科技大学学报(自然科学版), 2016, 43(3): 13-18. doi: 10.3969/j.issn.1001-2400.2016.03.003.
    ZHANG Xuefeng, CHEN BO, WANG Penghui, et al. Infinite max-margin Beta process factor analysis model[J]. Journal of Xidian University (Natural Science), 2016, 43(3): 13-18. doi: 10.3969/j.issn.1001-2400.2016.03.003.
    DU L, LIU H W, WANG P H, et al. Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3546-3559. doi: 10.1109/TSP. 2012.2191965.
    张学峰, 陈渤, 王鹏辉, 等. 一种基于Dirichlet过程隐变量支撑向量机模型的目标识别方法[J]. 电子与信息学报, 2015, 37(1): 29-36. doi: 10.11999/JEIT140129.
    ZHANG Xuefeng, CHEN Bo, WANG Penghui, et al. A
    target recognition method based on Dirichlet process latent variable support vector machine model[J]. Journal of Electronics Information Technology, 2015, 37(1): 29-36. doi: 10.11999/JEIT140129.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1452) PDF downloads(310) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return