Advanced Search
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
LIU Xichuan, SONG Kun, GAO Taichang, HU Yuntao. Research on the Effect of Complex Atmospheric Condition on Microwave Propagation Attenuation[J]. Journal of Electronics & Information Technology, 2018, 40(1): 181-188. doi: 10.11999/JEIT170253
Citation: LIU Xichuan, SONG Kun, GAO Taichang, HU Yuntao. Research on the Effect of Complex Atmospheric Condition on Microwave Propagation Attenuation[J]. Journal of Electronics & Information Technology, 2018, 40(1): 181-188. doi: 10.11999/JEIT170253

Research on the Effect of Complex Atmospheric Condition on Microwave Propagation Attenuation

doi: 10.11999/JEIT170253
Funds:

The National Natural Science Foundation of China (41505135, 41475020), The Natural Science Foundation of Jiangsu Province (BK20150708)

  • Received Date: 2017-03-29
  • Rev Recd Date: 2017-10-27
  • Publish Date: 2018-01-19
  • To describe the effect of atmospheric conditions on the microwave propagations precisely, establish the theoretical foundation for the new applications of the atmospheric inversion by microwave links, the propagation attenuation by the absorptive gas and various atmospheric particles are investigated systematically in this paper. The absorption of main gas component in atmosphere are calculated by ITU-R model, and then based on the physical characteristics and dielectric model of different types of precipitation particles, cloud and fog particles, and sand particles, the scattering characteristics of atmospheric particles cluster at the microwave band are calculated, the effect of particle size distribution, intensity, phase, and temperature on the microwave propagation at different waveband are discussed systematically. The numerical simulation results show that there are absorption band at 60 GHz, 180 GHz, and 320 GHz due to oxygen and vapor, and the attenuation is positively related to both the vapor content and air pressure, while it is negatively related to the temperature. The microwave propagation attenuation by precipitation are mainly influenced by the precipitation intensity, particles size distribution, phase and its component rate, the water content and phase of cloud and fog are the main factors that affect the microwave attenuation, the number density, size distribution and water content of dust are the main factors that affect the microwave attenuation, while the temperature is the least factor. In sum, in order of the attenuation coefficient, it goes: blast dust, precipitation, gas absorption, water fog, ice fog, and atmospheric dust.
  • loading
  • 刘西川, 高太长, 秦健, 等. 降雨对微波传输特性的影响分析[J]. 物理学报, 2010, 59(3): 2156-2162. doi: 10.7498/aps.59. 2156.
    LIU Xichuan, GAO Taichang, QIN Jian, et al. Effects analysis of rainfall on microwave transmission characteristics [J]. Acta Physica Sinica, 2010, 59(3): 2156-2162. doi: 10.7498 /aps.59.2156.
    Radiocommunication Sector of ITU, IMT Vision-Framework and overall objectives of the future development of IMT for 2020 and beyond[R]. Recommendation ITU-R M.2083-0. 2015.
    RAFIQUL I M, HABAEBI M H, HAIDAR I M, et al. Rain fade mitigation on earth-to-satellite microwave links using site diversity[C]. International Conference on Communications, Kuching, Malaysia, 2015: 186-191. doi: 10.1109/MICC.2015.7725431.
    王朝阳, 周兴华, 卢勇夺, 等. 中国沿海地基GPS水汽反演精度分析[J]. 大地测量与地球动力学, 2016, 36(12): 1060-1063. doi: 10.14075/j.jgg.2016.12.006.
    WANG Chaoyang, ZHOU Xinghua, LU Yongduo, et al. Accuracy analysis on precipitable water vapor derived from chinese coastal GPS measurement[J]. Journal of Geodesy and Geodynamic, 2016, 36(12): 1060-1063. doi: 10.14075/j.jgg. 2016.12.006.
    TOLLEFSON J. Mobile-phone signals bolster street-level rain forecasts[J]. Nature, 2017, 544(13): 146-147. doi: 10.1038 /nature.2017.21799.
    高太长, 宋堃, 刘西川, 等. 基于微波链路的路径雨强反演方法及实验研究[J]. 物理学报, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301.
    GAO Taichang, SONG Kun, LIU Xichuan, et al. Research on the method and experiment of path rainfall intensity inversion using a microwave link[J]. Acta Physica Sinica, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301.
    印敏, 高太长, 刘西川, 等. 微波链路测量降水研究综述[J]. 气象, 2015, 41(12): 1545-1553. doi: 10.7519/j.issn. 1000-0526. 2015.12.013.
    YIN Min, GAO Taichang, LIU Xichuan, et al. Research on microwave link measurement of precipitation[J]. Meteorological Monthly, 2015, 41(12): 1545-1553. doi: 10.7519 /j.issn.1000-0526.2015.12.013.
    KARMAKAR P K. Microwave Propagation and Remote Sensing: Atmospheric Influences with Models and Applications[M]. New York: CRC Press, 2011: 153-180.
    PERIC M V, PERIC D B, TODOROVIC B M, et al. Dynamic rain attenuation model for millimeter wave network analysis[J]. IEEE Transactions on Wireless Communications, 2017, 16(1): 441-450. doi: 10.1109/TWC.2016.2624729.
    赵振维. 水凝物的电波传播特性与遥感研究[D]. [博士论文], 西安电子科技大学, 2001: 8-73.
    ZHAO Zhenwei. Study on radiowave propagation characteritiscs and remote sensing of hydrometeors[D]. [Ph.D. dissertation], Xidian University, 2001: 8-73.
    杨瑞科, 李茜茜, 姚荣辉. 沙尘大气电磁波多重散射及衰减[J]. 物理学报, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205.
    YANG Ruike, LI Qianqian, and YAO Ronghuil. Multiple scattering and attenuation for electromagnetic wave propagation in sand and dust atmosphere[J]. Acta Physica Sinica, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205.
    刘西川, 刘磊, 高太长, 等. 不同类型降水对毫米波传播特性的影响研究[J]. 红外与毫米波学报, 2013, 32(4): 379-384. doi: 10.3724/SP.J.1010.2013.00379.
    LIU Xichuan, LIU Lei, GAO Taichang, et al. Effect of different precipitation on millimeter wave propagation characteristics[J]. Journal of Infrared and Millimeter Waves, 2013, 32(4): 379-384. doi: 10.3724/SP.J.1010.2013.00379.
    林乐科, 赵振维, 卢昌胜, 等. 地空路径统计雨衰减建模的几个问题[J]. 电波科学学报, 2016, 31(3): 616-622. doi: 10.13443 /j.cjors.2015081001.
    LIN Leke, ZHAO Zhenwei, LU Changsheng, et al. Issues on modelling rain attenuation statistics on earth-space links[J]. Chinese Journal of Radio Science, 2016, 31(3): 616-622. doi: 10.13443/j.cjors.2015081001.
    张在峰. 毫米波段雪的电磁散射及对雷达性能的影响[J]. 电波科学学报, 1999, 14(2): 178-185. doi: 10.13443/j.cjors.1999. 02.010.
    ZHANG Zaifeng. Electromagnetic scattering of snows and their effects on radar performance in MM wave band[J]. Chinese Journal of Radio Science, 1999, 14(2): 178-185. doi: 10.13443/j.cjors.1999.02.010.
    盛楠, 廖成, 张青洪, 等. 预测毫米波雾衰减的抛物方程模型研究[J]. 电子学报, 2014, 42(5): 958-962. doi: 10.3969/j.issn. 0372-2112.2014.05.019.
    SHENG Nan, LIAO Cheng, ZHANG Qinghong, et al. The parabolic equation model for estimating fog attenuation at millimeter wavelengths[J]. Acta Electronica Sinica, 2014, 42(5): 958-962. doi: 10.3969/j.issn.0372-2112.2014.05.019.
    张超, 朱莉, 林琳. 毫米波/亚毫米波大气传输特性研究[J]. 微波学报, 2015, 31(S2): 14-17.
    ZHANG Chao, ZHU Li, and LIN Lin. Research on the atmospheric transmission characteristics of millimeter wave/submillimeter wave[J]. Journal of Microwaves, 2015, 31(S2): 14-17.
    盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2003: 416-419.
    SHENG Peixuan, MAO Jietai, LI Jianguo, et al. Atmospheric Physics[M]. Beijing: Beijing University Press, 2003: 416-419.
    弓树宏. 电磁波在对流层中传输与散射若干问题研究[D]. [博士论文], 西安电子科技大学, 2008: 31-32.
    GONG Shuhong. Research on several transmission and scattering of electromagnetic wave propagation problems in troposphere atmosphere[D]. [Ph.D. dissertation], Xidian University, 2008: 31-32.
    LIEBE H J, HUFFORD G A, and MANABE T. A model for the complex permittivity of water at frequencies below 1 THz[J]. International Journal of Infrared Millimeter Waves, 1991, 12(7): 659-667. doi: 10.1007/BF01008897.
    JONATHAN H J, and WU D L. Ice and water permittivities for millimeter and sub-millimeter remote sensing applications [J]. Atmospheric Science Letters, 2004, 5(7): 146-151. doi: 10.1002/asl.77.
    葛觐铭. 西北沙尘气溶胶光学特性反演与沙尘暴的卫星监测[D]. [博士论文], 兰州大学, 2010: 24-71.
    GE Jinming. Dust aerosols optical characteristics retrieval and satellite monitoring of duststorm over Northwestern[D]. [Ph.D. dissertation], Lanzhou University, 2010: 24-71.
    THURAI M, GATLIN P, BRINGI V N, et al. Very large rain drops from 2D video disdrometers and concomitant polarimetric radar observations[C]. The Eighth European Conference On Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany, 2014: 231-231.
    BEARD K V, BRINGI V N, and THURAI M. A new understanding of raindrop shape[J]. Atmospheric Research, 2010, 97: 396-415. doi: 10.1016/j.atmosres.2010.02.001.
    PEERAMED C and HAJIME F. Improvement of depolarization formula using Gamma raindrop size distribution up to 100 GHz[C]. IEEE 4th Asia-Pacific Conference on Antennas and Propagation, Kuta, Indonesia, 2015: 497-500. doi: 10.1109/APCAP.2015.7374463.
    刘西川, 高太长, 刘磊, 等. 降水现象对大气消光系数和能见度的影响[J]. 应用气象学报, 2011, 21(4): 433-441. doi: 10.11898/1001-7313.20100406.
    LIU Xichuan, GAO Taichang, LIU Lei, et al. Influences of precipitation on atmospheric extinction coefficient and visibility[J]. Journal of Applied Meteorological Science, 2011, 21(4): 433-441. doi: 10.11898/1001-7313.20100406.
    MARTIN T and WALLIN M. Validation method for numerical simulations of large objects using the T-matrix for a collection of scatterers[C]. 2015 International Conference on Electromagnetics in Advanced Applications, Turin, Italy, 2015: 1127-1130. doi: 10.1109/ICEAA.2015.7297294.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1568) PDF downloads(273) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return