Advanced Search
Volume 39 Issue 11
Nov.  2017
Turn off MathJax
Article Contents
RAN Xiaomin, FANG Deliang. Distributed Sensor Allocation Algorithm for Target Tracking Based on Potential Game[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2748-2754. doi: 10.11999/JEIT170229
Citation: RAN Xiaomin, FANG Deliang. Distributed Sensor Allocation Algorithm for Target Tracking Based on Potential Game[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2748-2754. doi: 10.11999/JEIT170229

Distributed Sensor Allocation Algorithm for Target Tracking Based on Potential Game

doi: 10.11999/JEIT170229
Funds:

The National Science and Technology Major Project of the Ministry of Science and Technology of China (2014ZX03006003)

  • Received Date: 2017-03-20
  • Rev Recd Date: 2017-05-15
  • Publish Date: 2017-11-19
  • Considering the limitation of energy, bandwidth, observation distance and communication distance in the Wireless Sensor Networks (WSN), a distributed sensor allocation algorithm based on potential game is proposed to solve the multi-target tracking problem. The predicted coordinate of target and Geometric Dilution Of Precision (GDOP) is used to establish the sensor allocation game modal with local information, and it is proved to be an exact potential game with at least one Nash Equilibrium point. On this basis, a parallel best response dynamic is proposed as the learning algorithm to search the Nash Equilibrium point. It is proved that the learning algorithm can help the game modal converge to a Nash Equilibrium point, and has faster convergence speed than traditional best response dynamic when sensors just communicate with local one-hop neighboring ones. In addition, a fully distributed decision makers selection mechanism is proposed on the basis of the Carrier Sense Multiple Access (CSMA), which is more satisfied with the self-organizing characteristic. The simulation results show that the proposed algorithm has great advantages in convergence speed, tracking accuracy and energy efficiency.
  • loading
  • EZ-ZAIdI A and RAKRAK S. A comparative study of target tracking approaches in wireless sensor networks[J]. Journal of Sensors, 2016, 2016(2): 1-11. doi: 10.1155/2016/3270659.
    YANG K. Wireless Sensor Networks[M]. Berlin: Springer, 2014: 1-3.
    KALANDROS M and PAO L Y. Covariance control for multisensor systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1138-1157. doi: 10.1109/ TAES.2002.1145739.
    HOFFMANN G M and TOMLIN C J. Mobile sensor network control using mutual information methods and particle lters[J]. IEEE Transactions on Automatic Control, 2010, 55(1): 32-47. doi: 10.1109/TAC.2009.2034206.
    SHEN X and VARSHNEY P K. Sensor selection based on generalized information gain for target tracking in large sensor networks[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 363-375. doi: 10.1109/TSP.2013.2289881.
    LIU S, CHEPURI S P, FARDAD M, et al. Sensor selection for estimation with correlated measurement noise[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3509-3522. doi: 10.1109/TSP.2016.2550005.
    KAPLAN L M. Global node selection for localization in a distributed sensor network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 113-135. doi: 10.1109/TAES.2006.1603409.
    ZUO L, NIU R, and VARSHNEY P K. A sensor selection approach for target tracking in sensor networks with quantized measurements[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, Nevada, USA, 2008: 2521-2524. doi: 10.1109/ICASSP.2008. 4518161.
    刘钦, 刘峥, 谢荣. 防空雷达网对多隐身目标的协同检测与跟踪[J]. 电子与信息学报, 2013, 35(3): 601-607. doi: 10.3724/ SP.J.1146.2012.01072.
    LIU Qin, LIU Zheng, and XIE Rong. Collaborative detection and tracking of stealthy target by netted radar[J]. Journal of Electronics Information Technology, 2013, 35(3): 601-607. doi: 10.3724/SP.J.1146.2012.01072.
    THARMARASA R, KIRUBARAJAN T, SINHA A, et al. Decentralized sensor selection for large-scale multisensor- multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1307-1324. doi: 10.1109/ TAES.2011.5751260.
    JOSHI S and BOYD S. Sensor selection via convex optimization[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 451-462. doi: 10.1109/TSP.2008.2007095.
    NAEEM M, PAREEK U, and LEE D C. Swarm intelligence
    for sensor selection problems[J]. IEEE Sensors Journal, 2012, 12(8): 2577-2585. doi: 10.1109/JSEN.2012.2196430.
    LING Q, FU Y, and TIAN Z. Localized sensor management for multi-target tracking in wireless sensor networks[J]. Information Fusion, 2011, 12(3): 194-201. doi: 10.1016/ j.inffus.2011.01.003.
    ZHANG Q, ZHANG C, LIU M, et al. Local node selection for target tracking based on underwater wireless sensor networks[J]. International Journal of Systems Science, 2015, 46(16): 2918-2927. doi: 10.1080/00207721.2014.880199.
    FU Y, LING Q, and TIAN Z. Distributed sensor allocation for multi-target tracking in wireless sensor networks[J]. IEEE Transactions on Aerospace Electronic Systems, 2012, 48(4): 3538-3553. doi: 10.1109/TAES.2012.6324736.
    CHEN X and HUANG J. Spatial spectrum access game[J]. IEEE Transactions on Mobile Computing, 2015, 14(3): 646-659. doi: 10.1109/TMC.2014.2326673.
    郝晓辰, 姚宁, 汝小月, 等. 基于生命期模型的无线传感器网络信道分配博弈算法[J]. 物理学报, 2015, 64(14): 1-11. doi: 10.7498/aps.64.140101.
    HAO Xiaochen, YAO Ning, RU Xiaoyue, et al. Channel allocation game algorithm based on lifetime model in wireless sensor network[J]. Acta Physica Sinica, 2015, 64(14): 1-11. doi: 10.7498/aps.64.140101.
    贾杰, 张桂园, 陈剑, 等. 无线传感器网络中基于潜在博弈的分布式节点定位[J]. 电子学报, 2014, 42(9): 1724-1730. doi: 10.3969/j.issn.0372-2112.2014.09.010.
    JIA Jie, ZHANG Guiyuan, CHEN Jian, et al. Distributed node localization based on potential game in wireless sensor networks[J]. Acta Electronica Sinica, 2014, 42(9): 1724-1730. doi: 10.3969/j.issn.0372-2112.2014.09.010.
    MORAGREGA A, CLOSAS P, and IBARS C. Potential game for energy-efficient RSS-based positioning in wireless sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(7): 1394-1406. doi: 10.1109/JSAC. 2015.2430172.
    L X, LIU K, and HU P. Geometry influence on GDOP in TOA and AOA positioning systems[C]. Second International Conference on Networks Security Wireless Communications and Trusted Computing, Las Vegas, Nevada, USA, 2010: 58-61. doi: 10.1109/NSWCTC.2010.150.
    MONDERER D and SHAPLEY L S. Potential games[J]. Games Economic Behavior, 1996, 14(1): 124-143. doi: 10.1006/game. 1996.0044.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1488) PDF downloads(261) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return