Citation: | LIU Chang, ZHANG Yike, ZHANG Pengyuan, YAN Yonghong. Neural Network Language Modeling Using an Improved Topic Distribution Feature[J]. Journal of Electronics & Information Technology, 2018, 40(1): 219-225. doi: 10.11999/JEIT170219 |
MIKOLOV T, KARAFIT M, BURGET L, et al. Recurrent neural network based language model[C]. INTERSPEECH, Makuhari, Chiba, Japan, 2010: 1045-1048.
|
MIKOLOV T, JOULIN A, CHOPRA S, et al. Learning longer memory in recurrent neural networks[OL]. https:// arxiv.org/abs/1412.7753v22014.
|
MEDENNIKOV I and BULUSHEVA A. LSTM-based language models for spontaneous speech recognition[C]. International Conference on Speech and Computer, Athens, Greece, 2016: 469-475.
|
HUANG Z, ZWEIG G, and DUMOULIN B. Cache based recurrent neural network language model inference for first pass speech recognition[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 6354-6358.
|
COCCARO N and JURAFSKY D. Towards better integration of semantic predictors in statistical language modeling[C]. International Conference on Spoken Language Processing, Sydney, Australia, 1998: 2403-2406.
|
KHUDANPUR S and WU J. Maximum entropy techniques for exploiting syntactic, semantic and collocational dependencies in language modeling[J]. Computer Speech Language, 2000, 14(4): 355-372.
|
LAU R, ROSENFELD R, and ROUKOS S. Trigger-based language models: A maximum entropy approach[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, Florida, USA, 2002: 45-48.
|
ECHEVERRY-CORREA J D, FERREIROS-LPEZ J, COUCHEIRO-LIMERES A, et al. Topic identification techniques applied to dynamic language model adaptation for automatic speech recognition[J]. Expert Systems with Applications, 2015, 42(1): 101-112.
|
MIKOLOV T and ZWEIG G. Context dependent recurrent neural network language model[C]. Spoken Language Technology Workshop, Miami, Florida, USA, 2012: 234-239.
|
张剑, 屈丹, 李真. 基于词向量特征的循环神经网络语言模型[J]. 模式识别与人工智能, 2015, (4): 299-305. doi: 10.16451 /j.cnki.issn1003-6059.201504002.
|
ZHANG Jian, QU Dan, and LI Zhen. Recurrent neural network language model based on word vector features[J]. Pattern Recognition and Artificial Intelligence, 2015, (4): 299-305. doi: 10.16451/j.cnki.issn1003-6059.201504002.
|
GONG C, LI X, and WU X. Recurrent neural network language model with part-of-speech for Mandarin speech recognition[C]. International Symposium on Chinese Spoken Language Processing, Singapore, 2014: 459-463.
|
左玲云, 张晴晴, 黎塔, 等. 电话交谈语音识别中基于LSTM-DNN语言模型的重评估方法研究[J]. 重庆邮电大学学报(自然科学版), 2016, 28(2): 180-186. doi: 10.3979/j.issn. 1673-825X.2016.02.007.
|
ZUO Lingyun, ZHANG Qingqing, LI Ta, et al. Revaluation based on LSTM DNN language model in telephone conversation sqeech recognition[J]. Journal of Chongqing University of Post and Telecomunications, 2016, 28(2): 180-186. doi: 10.3979/j.issn.1673-825X.2016.02.007.
|
王龙, 杨俊安, 陈雷, 等. 基于循环神经网络的汉语语言模型并行优化算法[J]. 应用科学学报, 2015, 33(3): 253-261. doi: 10.3969/j.issn.0255-8297.2015.03.004.
|
WANG Long, YANG Junan, CHEN Lei, et al. Parallel optimization of chinese language model based on recurrent neural network[J]. Journal of Applied Sciences, 2015, 33(3): 253-261. doi: 10.3969/j.issn.0255-8297.2015.03.004.
|
PIOTR Bojanowski, EDOUARD Grave, ARMAND Joulin, et al. Enriching word vectors with subword information[OL]. https://arxiv.org/abs/1607.04606v2.
|
GANGULY D, ROY D, MITRA M, et al. Word embedding based generalized language model for information retrieval[C]. The International ACM SIGIR Conference, Santiago, Chile, 2015: 795-798.
|
LI X. Recurrent neural network training with preconditioned stochastic gradient descent[OL]. https://arxiv.org/abs/1606. 04449v2, 2016.
|
BLEI D M, NG A Y, and JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
|
BHUTADA S, BALARAM V V S S S, and BULUSU V V. Semantic latent dirichlet allocation for automatic topic extraction[J]. Journal of Information Optimization Sciences, 2016, 37(3): 449-469.
|
MARCUS M P, MARCINKIEWICZ M A, and SANTORINI B. Building a large annotated corpus of English: the penn treebank[J]. Computational Linguistics, 1993, 19(2): 313-330.
|