Advanced Search
Volume 39 Issue 12
Dec.  2017
Turn off MathJax
Article Contents
SUN Rui, FANG Wei, HUANG Qiheng, GAO Jun. Indirect Person Re-identification Based on Support Samples[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2953-2961. doi: 10.11999/JEIT170215
Citation: SUN Rui, FANG Wei, HUANG Qiheng, GAO Jun. Indirect Person Re-identification Based on Support Samples[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2953-2961. doi: 10.11999/JEIT170215

Indirect Person Re-identification Based on Support Samples

doi: 10.11999/JEIT170215
Funds:

The National Natural Science Foundation of China (61471154), Anhui Province Science and Technology Research (170d0802181)

  • Received Date: 2017-03-17
  • Rev Recd Date: 2017-09-15
  • Publish Date: 2017-12-19
  • Person re-identification is the identification of the same pedestrian in a multi camera surveillance without overlapping views. Aiming at the problem of the existence of visual angle, illumination and scale change in pedestrian images which from different camera. An indirect person re-identification method is proposed based on the support samples. At first, the algorithm extracts the support samples from different cameras by the clustering method. When it comes to matching pedestrians from different cameras, the support samples are used to distinguish the pedestrians categories under the camera on the basis of the distance metric, by comparing the categories to determine whether the same pedestrian. The method avoids the direct matching of pedestrian images under different cameras, which effectively solve the problem of the existence of visual angle, illumination and scale change in different camera. The experimental results show that the algorithm has a high recognition rate, and on the data set VIPeR, CAVIAR4ReID and CUHK01the, Rank1 reaches 43.60%, 41.36% and 43.82% respectively.
  • loading
  • ZHAO R, OUYANG W L, WANG X G, et al. Person Re-identification by Salience Matching[C]. IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 2528-2535. doi: 10.1109/ICCV.2013.314.
    DORETTO G, SEBATIAN T, TU P, et al. Appearance- based person re-identification in camera networks: Problem overview and current approaches[J]. Journal of Ambient Intelligence and Humanized Computing, 2011, 2(2): 127-151. doi: 10.1007/s12652-010-0034-y.
    齐美彬, 顫胜顺, 王运侠, 等. 基于多特征子空间与核学习的行人再识别[J]. 自动化学报, 2016, 42(2): 299-308. doi: 10.16383/i.aas.2016.c150344.
    QI Meibin, TAN Shengshun, WANG Yunxia, et al. Multi- feature subspace and kernel learning for person re- identification[J]. Acta Automatica Sinica, 2016, 42(2): 299-308. doi: 10.16383/i.aas.2016.c150344.
    ZHAO Rui, OUYANG Wanli, and WANG Xiaogang. Person re-identification by saliency learning[J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2017, 39(2): 356-370. doi: 10.1109/TPAMI.2016.2544310.
    XIAO Tong, LI Hongsheng, OUYANG Wanli, et al. Recurrent convolutional network for vidieo-baesd person re-identification[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, US, 2016: 1325-1334. doi: 10.1109/CVPR.2016.148.
    SUN Chong, WANG Dong, and LU Huchaun. Person re-identification via distance metric learning with latent variables[J]. IEEE Transactions on Image Processing, 2017, 26(1): 23-34. doi: 10.1109/TIP.2016.2619261.
    SATHISH P K and BALAJI S. Person re-identification using part based hybrid descriptor[C]. 2016 Second International Conference on Cognitive Computing and Information Processing, Mysuru, India, 2016: 1-4. doi: 10.1109/CCIP. 2016.7802849.
    GAO Bin, ZENG Mingyong, and XU Shiming. Person re- identtification with discriminatively trained viewpoint invariant orthogonal dictionaries[J]. Electronics Letters, 2016, 52(23): 1914-1916. doi: 10.1049/el.2016.2639.
    ZHENG Liang, WANG Shengjin, TIAN Lu, et al. Scalar person re-identification: A benchmark[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1116-1124. doi: 10.1109/ICCV.2015.133.
    WANG Taiqing, GONG Shaogang, ZHU Xiatian, et al. Person re-identification by discriminative selection in video ranking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(12): 2501-2514. doi: 10.1109/ TPAMI.2016.2522418.
    GRAY D and TAO H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]. European Conference on Computer Vision, Marseille France, 2008: 262-275. doi: 10.1007/978-3-540-88682-2_21.
    YANG Y, YANG J, YAN J, et al. Salientcolor names for person re-identification[C]. European Conference on Computer Vision, Zurich, 2014: 536-550. doi: 10.1007/978- 3-319-10590-1_35.
    FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[C]. 2010 IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2360-2367. doi: 10.1109/CVPR.2010.5539936.
    MA B, SU Y, and JURIE F. Local descriptors encoded by fisher vectors for person re-identification[C]. European Conference on Computer Vision, Firence, Italy, 2012: 413-422. doi: 10.1007/978-3-642-33863-2_41.
    LIAO S C, HU Y, ZHU X Y, et al. Person re-identification by local maximal occurrence representation and metric learning [C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 2197-2206. doi: 10.1109/CVPR.2015. 7298832.
    KOSTINGER M, HIRZER M, WOHLHART P, et al. Large scale metric learning from equivalence constraints[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Rhode, Island, 2012: 2288-2295. doi: 10.1109/ CVPR.2012.6247939.
    PROSSER B, ZHNEG W S, GONG S, et al. Person reidentification by support vector ranking[C]. British Machine Vision Conference, Aberystwyth, UK, 2010: 21.1-21.11. doi: 10.5244/C.24.21.
    TAO D, JIN L, WANG Y, et al. Person reidentification by regularized smoothing kiss metric learning[J]. IEEE Transaction on Circuit and Systems for Video Technology, 2013, 23(10): 1675-1685. doi: 10.1109/ TCSVT.2013.225413.
    AHMED E, JONES M, and MARKS T K. An improved deep learning architecture for person re-identification[C]. 2015 IEEE Conference on Computer Visionand Pattern Recognition, Boston, USA, 2015: 3908-3916. doi: 10.1109/ CVPR.2015.7299016.
    LI W, ZHAO R, XIAO T, et al. DeepReID: Deep filter pairing neural network for person re-identification[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 152-159. doi: 10.1109/ CVPR.2014.27.
    ZHENG Liang, WANG Shenjin, WANG Jingdong, et al. Accurate image search with multi-scalar contextual evidences [J]. International Journal of Computer Vision, 2016, 120(1): 1-13. doi: 10.1007/s11263-016-0889-2.
    CHENG D S, CRISTANI M, STOPPA M, et al. Custom pictorial structures for re-identification[C]. British Machine Vision Conference, Scotland, UK, 2011: 68.1-68.11. doi: 10.5244/C.25.68.
    LI Z, CHANG S Y, LIANG F, et al. Learning locally adaptive decision functions for person verification[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3610-3617. doi: 10.1109/CVPR.2013. 463.
    ZHAO R, OUYANG W L, and WANG X G. Unsupervised salience learning for person re-identification[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3586-3593. doi: 10.1109/CVPR.2013. 460.
    ZHENG W S, GONG S G, and XIANG T. Person re-identification by probabilistic relative distance comparison [C]. 2011 IEEE Conference on Computer Vision and Pattern Recognition. Conneticut, USA, 2011: 649-656. doi: 10.1109/ CVPR.2011.5995598.
    XIAO Tong, LI Hongsheng, OUYANG wanly, et al. Learning deep feature representations with domain guided dropout for person re-identification[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 2016: 1249-1258. doi: 10.1109/CVPR.2016. 140.
    MIGNON A and JURIE F. PCCA: A new approach for distance learning from sparse pairwise constraints[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Rhode, Island, 2012: 2666-2672. doi: 10.1109/ CVPR.2012.6247987.
    PEDAGADI S, ORWELL J, VELASTIN S, et al. Local fisher discriminant analysis for pedestrian Re-identification[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 3318-3325. doi: 10.1109/ CVPR.2013.426.
    ZHAO R, OUYANG W L, and WANG X G. Learning mid-level filters for person re-identification[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 144-151. doi: 10.1109/CVPR.2014.26.
    XIONG F, GOU M R, CAMPS O, et al. Person re-identification using kernel-based metric learning methods [C]. European Conference on Computer Vision, Zurich, Switzerland, 2014: 1-16. doi: 10.1007/978-3-319- 10584-0_1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (982) PDF downloads(282) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return