Advanced Search
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
ZHANG Limin, WU Zhaojun, ZHONG Zhaogen. A Fast Algorithm for Blind Identification of Turbo at High BER[J]. Journal of Electronics & Information Technology, 2018, 40(1): 235-243. doi: 10.11999/JEIT170168
Citation: ZHANG Limin, WU Zhaojun, ZHONG Zhaogen. A Fast Algorithm for Blind Identification of Turbo at High BER[J]. Journal of Electronics & Information Technology, 2018, 40(1): 235-243. doi: 10.11999/JEIT170168

A Fast Algorithm for Blind Identification of Turbo at High BER

doi: 10.11999/JEIT170168
Funds:

The National Natural Science Foundation of China (91538201), The Taishan Scholar Special Foundation (ts201511020)

  • Received Date: 2017-02-28
  • Rev Recd Date: 2017-08-17
  • Publish Date: 2018-01-19
  • In order to solve the defects which are poor error tolerance and large amount of calculation in current algorithms to recognize the Recursive Systematic Convolutional (RSC) encoder in Turbo codes, a new fast algorithm is proposed. Firstly, based on special structure of RSC codes, the concept named generalized code weight is defined which is more general. Secondly, the RSC polynomial database is built up, the probability distribution of generalized code weight can be analyzed under two situation whether the polynomials in database is actual polynomial, then based on distribution and Maxmin criteria, the decision threshold of the fast algorithm is deduced. Finally, the parameters can be recognized by traversing the polynomials in database and compare the corresponding generalized code weight with decision threshold. The simulation results show that theoretical analysis of the probability distribution is consistent with the simulations and the performance of error tolerant is preferable. The actual simulation show that correct rate of recognition can reach above 90% when the rate of bit error is as high as 0.09, besides the computational complexity is low.
  • loading
  • MUKHTAR H, AL-DWEIK A, and SHAMI A. Turbo product codes: applications, challenges, and future directions [J]. IEEE Communications Surveys Tutorials, 2016, 18(4): 3052-3069. doi: 10.1109/COMST.2016.2587863.
    LI H, GAO Z, ZHAO M, et al. Partial iterative decode of Turbo codes for on-board processing satellite platform[J]. China Communications, 2015, 12(11): 1-8. doi: 10.1109/ CC.2015.7366233.
    任亚博, 张健, 刘以农. 高误码率下Turbo码交织器的恢复方法[J]. 电子与信息学报, 2015, 37(8): 1926-1930. doi: 10.11999 /JEIT141556.
    REN Yabo, ZHANG Jian, and LIU Yinong. Reconstruction of Turbo-code interleaver at high bit error rate[J]. Journal of Electronics Information Technology, 2015, 37(8): 1926-1930. doi: 10.11999/JEIT141556.
    刘俊, 李静, 彭华. 基于校验方程平均符合度的Turbo码交织器估计[J]. 电子学报, 2016, 44(5): 1213-1217. doi: 10.3969/ j.issn.0372-2112.2016.05.029.
    LIU Jun, LI Jing, and PENG Hua. Estimation of Turbo-code Interleaver based on average conformity of parity-check equation[J]. Acta Electronica Sinica, 2016, 44(5): 1213-1217. doi: 10.3969/j.issn.0372-2112.2016.05.029.
    谢辉, 黄知涛, 王峰华. 信道编码盲识别技术研究进展[J]. 电子学报, 2013, 41(6): 1166-1176.
    XIE Hui, HUANG Zhitao, and WANG Fenghua. Research progress of blind recognition of channel coding[J]. Acta Electronica Sinica, 2013, 41(6): 1166-1176.
    BARBIER J. Reconstruction of Turbo-code encoders[J]. The International Society for Optical Engineer, 2005, 5819: 463-473.
    解辉, 王峰华, 黄知涛, 等. 基于改进欧几里得算法的卷积码快速盲识别算法[J]. 国防科技大学报, 2012, 34(6): 159-162.
    XIE Hui, WANG Fenghua, HUANG Zhitao, et al. A fast method for blind recognition of convolutional codes based on improved Euclidean algorithm[J]. Journal of National University of Defense Technology, 2012, 34(6): 159-162.
    邹艳, 陆佩忠. 关键方程的新推广[J]. 计算机学报, 2006, 29(5): 711-718.
    ZOU Yan and LU Peizhong. A new generalization of key equation[J]. Chinese Journal of Computers, 2006, 29(5): 711-718.
    刘健, 王晓军, 周希元. 基于Walsh-Hadamard变换的卷积码盲识别[J]. 电子与信息学报, 2010, 32(4): 884-888. doi: 10.3724/SP.J.1146.2009.00359.
    LIU Jian, WANG Xiaojun, and ZHOU Xiyuan. Blind recognition of convolutional coding based on Walsh- Hadamard transform[J]. Journal of Electronics Information Technology, 2010, 32(4): 884-888. doi: 10.3724/ SP.J.1146.2009.00359.
    YU P D, LI J, and PENG H. A least square method for parameter estimation of RSC sub-codes of Turbo codes[J]. IEEE Communications Letters, 2014, 18(4): 644-647.
    DEBESSU Y G, WU H C, and JIANG H. Novel blind encoder parameter estimation for Turbo codes[J]. IEEE Communications Letters, 2012, 16(16): 1917-1920.
    于沛东, 李静, 彭华. 一种利用软判决的信道编码识别新算法[J]. 电子学报, 2013, 41(2): 302-305.
    YU Peidong, LI Jing, and PENG Hua. A novel algorithm for channel coding recognition using soft-decision[J]. Acta Electronica Sinica, 2013, 41(5): 302-305.
    武恒州, 罗霄斌, 刘杰. Turbo码盲识别技术研究[J]. 无线电工程, 2015, 45(5): 24-27.
    WU Hengzhou, LUO Xiaobin, and LIU Jie. Research on blind recognition of Turbo codes[J]. Journal of Radio Engineering, 2015, 45(5): 24-27.
    张旻, 陆凯, 李歆昊, 等. 归零Turbo码的盲识别方法[J]. 系统工程与电子技术, 2016, 38(6): 1424-1427. doi: 10.3969/ j.issn.1001-506X.2016.06.31.
    ZHANG Min, LU Kai, LI Xinhao, et al. Blind recognition method for the Turbo codes on trellis termination[J]. Journal of Systems Engineering and Electronics, 2016, 38(6): 1424-1427. doi: 10.3969/j.issn.1001-506X.2016.06.31.
    NASERI A, AZMON O, and FAZELI S. Blind recognition algorithmn of Turbo codes for communication intelligence systems[J]. International Journal of Computer Science Issues, 2011, 8(6): 68-72.
    东阳. Turbo码盲识别技术研究与实现[D]. [硕士论文], 电子科技大学, 2015.
    DONG Yang. The identification of Turbo-codes and its implementation[D]. [Mater dissertation], University of Electronic Science and Technology of China, 2015.
    林晓娴, 王维欢. SIMD-BF模型上的并行FWHT算法研究[J].计算机时代, 2011(1): 30-32.
    LIN Xiaoxian and WANG Weihuan. A study of parallel FWHT algorithm based on SIMD-BF model[J]. Computer Era, 2011(1): 30-32.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1428) PDF downloads(168) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return