Advanced Search
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
SHI Wenjuan, SUN Yanjing, ZUO Haiwei, CAO Qi. No-reference Mobile Video Quality Assessment Based on Video Natural Statistics[J]. Journal of Electronics & Information Technology, 2018, 40(1): 143-150. doi: 10.11999/JEIT170165
Citation: SHI Wenjuan, SUN Yanjing, ZUO Haiwei, CAO Qi. No-reference Mobile Video Quality Assessment Based on Video Natural Statistics[J]. Journal of Electronics & Information Technology, 2018, 40(1): 143-150. doi: 10.11999/JEIT170165

No-reference Mobile Video Quality Assessment Based on Video Natural Statistics

doi: 10.11999/JEIT170165
Funds:

The National Natural Science Foundation of China (51504214, 61771417), The Natural Science Foundation of Jiangsu Province (BK20150204), The National Key Research and Development Program (2016YFC0801403), The Fundamental Research and Development Foundation of Jiangsu Province (BE2015040), China Postdoctoral Science Foundation (2015M 581884)

  • Received Date: 2017-02-27
  • Rev Recd Date: 2017-10-23
  • Publish Date: 2018-01-19
  • Considering the influence of compression and wireless channel packet-loss on mobile video quality in wireless network, analyzing the space-time perceptual statistics of the differences between video adjacent frames, a No-reference Mobile Video Quality Assessment (NMVQA) algorithm is proposed based on video natural statistics. First, the influences of various video distortion type on the statistical characteristics of difference coefficients between video adjacent frames are analyzed in terms of the natural statistical regularities of video frame difference. Second, the temporal change of the distribution parameters with respect to the products of adjacent frame differences computed along horizontal, vertical and diagonal spatial orientations are calculated. Finally, the distortion degree of mobile video is measured by the correlation between the multi-scale temporal changes of statistical characteristics of difference coefficients between video adjacent frames. Experimental results in the LIVE mobile video database show that NMVQA is well consistent with subjective assessment results, and can reflect human subjective feeling well. NMVQA can evaluate the performance of real-time online adjustment of the source rate and wireless channel parameters.
  • loading
  • SHAO Hua, WEN Xiangming, LU Zhaoming, et al. Reduced frame set on wireless distorted video for quality assessment[J]. The Journal of China Universities of Posts and Telecommunications, 2016, 23(4): 77-82. doi: 10.1016/S1005- 8885(16)60048-1.
    LIU Yan and LEE Jack Y B. Streaming variable bitrate video over mobile networks with predictable performance[C]. IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1-7. doi: 10.1109/WCNC.2016.7565108.
    MOORTHY A K, CHOI L K, BOVIK A C, et al. Video quality assessment on mobile devices: Subjective, behavioral and objective studies[J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(6): 652-671. doi: 10.1109/JSTSP. 2012.2212417.
    SOUNDARARAJAN R and BOVIK A C. Video quality assessment by reduced reference spatio-temporal entropic differencing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(4): 684-694. doi: 10.1109/ TCSVT.2012.2214933.
    SAAD M A, BOVIK A C, and CHARRIER C. Blind prediction of natural video quality[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1352-1365. doi: 10.1109/TIP. 2014.2299154.
    MITTAL A, SAAD M A, and BOVIK A C. A completely blind video integrity oracle[J]. IEEE Transactions on Image Processing, 2016, 25(1): 289-300. doi: 10.1109/TIP.2015. 2502725.
    HSIAO Yimao, LEE Jengfarn, CHEN Jaishiarng, et al. H.264 video transmissions over wireless networks: challenges and solutions[J]. Computer Communications, 2011, 34: 1661-1672. doi: 10.1016/j.comcom.2011.03.016.
    YU Qingqing and SUN Songlin. Mobile video perception assessment model based on QoE[C]. 16th International Symposium on Communications and Information Technologies, Qingdao, China, 2016: 642-645. doi: 10.1109/ ISCIT.2016.7751712.
    陈希宏, 金跃辉, 杨谈. 3G网络中移动视频质量评估模型的研究[J]. 计算机科学, 2015, 42(9): 86-93.
    CHEN Xihong, JIN Yuehui, and YANG Tan. Study on quality assessment model for mobile videos over 3G network [J]. Computer Science, 2015, 42(9): 86-93.
    SONG Wei and TJONDRONEGORO D W. Acceptablity- based QoE models for mobile video[J]. IEEE Transactions on Multimedia, 2014, 3(16): 738-750. doi: 10.1109/TMM.2014. 2298217.
    OLSON S and GROSSBERG S. A neural network for the develop of simple and complex cell receptive fields within cortical maps of orientation and ocular dominance[J]. Neural Networks, 1998, 11(2): 189-208. doi: 10.1016/s0893-6080(98) 00003-3.
    FREEMAN J and SIMONCELLI E P. Metamers of the ventral stream[J]. Nature Neuroscience, 2011, 14(9): 1195-1201. doi: 10.1038/nn.2889.
    LASMAR N E, STITOU Y, and BERTHOUMIEU Y. Multiscale skewed heavy tailed model for texture analysis[C]. 2009 IEEE International conference on Image Processing, Cairo, Egypt, 2009: 2281-2284. doi: 10.1109/icip.2009. 5414404.
    MITTAL A, MOOTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708. doi: 10.1109/tip.2012.2214050.
    孙彦景, 杨玉芬, 刘东林, 等. 基于内在生成机制的多尺度结构相似性图像质量评价[J]. 电子与信息学报, 2016, 38(1): 127-134. doi: 10.11999/JEIT150616.
    SUN Yanjing, YANG Yufen, LIU Donglin, et al. Multiple- scale structural similarity image quality assessment based on internal generative mechanism[J]. Journal of Electronics Information Technology, 2016, 38(1): 127-134. doi: 10.11999 /JEIT150616.
    WANG Z, LU L, and BOVIK A C. Image quality assessment: from error measurement to structural similarity[J]. IEEE Signal Process Letter, 2004, 13(4): 600-612. doi: 10.1109/tip. 2003.819861.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1217) PDF downloads(172) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return