Advanced Search
Volume 39 Issue 12
Dec.  2017
Turn off MathJax
Article Contents
ZHANG Yifei, ZHANG Min, GUO Fucheng. Scanning Emitter Localization Using DOA and TDOI Measurements[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2921-2928. doi: 10.11999/JEIT170141
Citation: ZHANG Yifei, ZHANG Min, GUO Fucheng. Scanning Emitter Localization Using DOA and TDOI Measurements[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2921-2928. doi: 10.11999/JEIT170141

Scanning Emitter Localization Using DOA and TDOI Measurements

doi: 10.11999/JEIT170141
Funds:

Shanghai Aerospace Science and Technology Innovation Fund (SAST2015028)

  • Received Date: 2017-02-21
  • Rev Recd Date: 2017-09-18
  • Publish Date: 2017-12-19
  • The determination of the scanning emitter position with known scan rate using Direction Of Arrival (DOA) and Time Difference Of Interception (TDOI) is investigated. The Cramr-Rao Lower Bound (CRLB) of the DOA and TDOI based localization regime is firstly derived. It demonstrates that the equivalent DOA measurements noise power ratio of the individual regime is closely related to the improvement of the combination regime. To exclusively determine the position of the scanning emitter, the TOI measurements are transformed to the corresponding DOA measurements and then a Weighted Pseudo-linear Least Square (WPLS) estimator is proposed. However, the WPLS is biased due to the noise correlation between the regressor and regressand of the pseudo-linear equation. The Instrumental Variable (IV) method is resorted to eliminate the bias caused by the WPLS, and a Weighted IV (WIV) estimator, at the cost of two times computational complexity of the WPLS, is proposed. Simulations show that the WIV performs approximately to the Maximum Likelihood (ML) estimator. It can reach the CRLB in one scan cycle, and is asymptotic unbiased within multiple cycles.
  • loading
  • 孙仲康, 郭福成, 冯道旺, 等. 单站无源定位跟踪技术[M]. 北京: 国防工业出版社, 2008: 3-10.
    SUN Zhongkang, GUO Fucheng, FENG Daowang, et al. Single Observer Passive Location and Tracking Technology [M]. Beijing: National Defense Industry Press, 2008: 3-10.
    WANG Y and HO K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6524-6535. doi: 10.1109/TWC.2015.2456057.
    NGUYEN N H and DOGANCAY K. Optimal geometry analysis for multistatic TOA localization[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4180-4193. doi: 10.1109/TSP.2016.2566611.
    KALANTARI A, MALEKI S, CHATZINOTAS S, et al. Frequency of arrival-based interference localization using a single satellite[C]. 2016 8th Advanced Satellite Multimedia Systems Conference and the 14th Signal Processing for Space Communications Workshop (ASMS/SPSC), Palma de Mallorca, 2016: 1-6.
    LIU Y, GUO F, YANG L, et al. An improved algebraic solution for TDOA localization with sensor position errors[J]. IEEE Communications Letters, 2015, 19(12): 2218-2221. doi: 10.1109/LCOMM.2015.2486769.
    李金洲, 郭福成. 传感器误差条件下仅用到达频率差的无源定位性能分析[J]. 航空学报, 2011, 32(8): 1497-1505.
    LI Jinzhou and GUO Fucheng. Performance analysis for passive source localization using merely FDOA measurements with erroneous receiver positions[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1497-1505.
    LIU D, LIU K, MA Y, et al. Joint TOA and DOA localization in indoor environment using virtual stations[J]. IEEE Communications Letters, 2014, 18(8): 1423-1426. doi: 10.1109/LCOMM.2014.2333006.
    CHAN Y T and RUDNICKI S W. Bearings-only and Doppler-bearing tracking using instrumental variables[J]. IEEE Transactions on Aerospace Electronic Systems, 1992, 28(4): 1076-1083. doi: 10.1109/7.165369.
    YIN J, WAN Q, YANG S, et al. A simple and accurate TDOA-AOA localization method using two stations[J]. IEEE Signal Processing Letters, 2016, 23(1): 144-148. doi: 10.1109/ LSP.2015.2505138.
    HMAM H. Optimal sensor velocity configuration for TDOA- FDOA geolocation[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 628-637. doi: 10.1109/TSP.2016. 2621724.
    HMAM H. Scan-based emitter passive localization[J]. IEEE Transactions on Aerospace Electronic Systems, 2007, 43(1): 36-54. doi: 10.1109/TAES.2007.357153.
    AIDALA V J and NARDONE S C. Biased estimation properties of the pseudo-linear tracking filter[J]. IEEE Transactions on Aerospace Electronic Systems, 1982, 18(4): 432-441. doi: 10.1109/TAES.1982.309250.
    NARDONE S C, LINDGREN A G, and GONG K F. Fundamental properties and performance of conventional bearings-only target motion analysis[J]. IEEE Transactions on Automatic Control, 1984, 29(9): 775-787. doi: 10.1109/ TAC.1984.1103664.
    DOGANCAY K. Passive emitter localization using weighted instrumental variables[J]. Signal Processing, 2004, 84(3): 487-497. doi: 10.1016/j.sigpro.2003.11.014.
    HMAM H and DOGANCAY K. Passive localization of scanning emitters[J]. IEEE Transactions on Aerospace Electronic Systems, 2010, 46(2): 944-951. doi: 10.1109/TAES. 2010.5461671.
    DOGANCAY K. A closed-form pseudolinear estimator for geolocation of scanning emitters[C]. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, 2010: 3546-3549.
    KAY S M. 统计信号处理基础-卷I估计理论[M]. 罗鹏飞, 张文明, 刘忠, 等译. 北京: 电子工业出版社, 2014: 3-10, 23-41, 129-155.
    ZHANG Y F, ZHANG M, and GUO F C. Scanning emitter TMA by two fixed observers using time of interception[C]. IEEE 2016 Sensor Signal Processing for Defence (SSPD), Edinburgh, UK, 2016: 144-148.
    BECKER K. Simple linear theory approach to TMA observability[J]. IEEE Transactions on Aerospace Electronic Systems, 1993, 29(2): 575-578. doi: 10.1109/ 7.210096.
    张贤达. 矩阵分析与应用[M]. 第2版, 北京: 清华大学出版社, 2013: 54-61.
    ZHANG Xianda. Matrix Analysis and Applications[M]. Second Edition, Beijing: Tsinghua University Press, 2013: 54-61.
    NGUYEN N H and DOGANCAY K. Single-platform passive emitter localization with bearing and Doppler-shift measurements using pseudolinear estimation techniques[J]. Signal Processing, 2016, 125: 336-348. doi: 10.1016/j.sigpro. 2016.01.023.
    DOGANCAY K. Self-localization from landmark bearings using pseudolinear estimation techniques[J]. IEEE Transactions on Aerospace Electronic Systems, 2014, 50(3): 2361-2368. doi: 10.1109/TAES.2014.130461.
    WONG K Y and POLAK E. Identification of linear discrete time systems using the instrumental variable method[J]. IEEE Transactions on Automatic Control, 1967, 12(6): 707-718. doi: 10.1109/TAC.1967.1098734.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1042) PDF downloads(236) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return