Advanced Search
Volume 39 Issue 11
Nov.  2017
Turn off MathJax
Article Contents
ZHAO Zhan, ZHANG Xuru, FANG Zhen, CHEN Xianxiang, DU Lidong, LI Tianchang. Phonocardiogram Segmentation and Abnormal Phonocardiogram Screening Algorithm Based on Cardiac Cycle Estimation[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2677-2683. doi: 10.11999/JEIT170108
Citation: ZHAO Zhan, ZHANG Xuru, FANG Zhen, CHEN Xianxiang, DU Lidong, LI Tianchang. Phonocardiogram Segmentation and Abnormal Phonocardiogram Screening Algorithm Based on Cardiac Cycle Estimation[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2677-2683. doi: 10.11999/JEIT170108

Phonocardiogram Segmentation and Abnormal Phonocardiogram Screening Algorithm Based on Cardiac Cycle Estimation

doi: 10.11999/JEIT170108
Funds:

The National Natural Science Foundation of China (61302033), The Beijing Municipal Natural Science Foundation (Z160003), The National Key Research and Development Project (2016YFC1304302, 2016YFC0206502, 2016YFC1303900)

  • Received Date: 2017-02-10
  • Rev Recd Date: 2017-04-20
  • Publish Date: 2017-11-19
  • Heart disease is of highest morbidity and mortality. The cardiac structure and mechanical characteristics can be reflected by auscultation. Compared with echocardiography and nuclear magnetic resonance, auscultation gets the advantages of fast, low cost and easy to use. The composition of phonocardiogram is complex, and the auscultation is easy to be affected by the subjectivity of the doctor, various noise and disturbances, which limits the application of auscultation. The algorithm of phonocardiogram segmentation and abnormal phonocardiogram screening is presented. For the reason that the heart cycle is estimated in advance, 80% cardiac cycle can be recognition correctly when random disturbances exist. The diagnostic indexes of time and frequency domain with high discrimination are also presented, and the abnormal heart sounds are recognized by Support Vector Machine (SVM) with the accuracy about 92%. The algorithm can be used for assisting doctors or portable phonocardiogram monitoring device.
  • loading
  • KIM S and HWANG D. Murmur-adaptive compression technique for phonocardiogram signals[J]. Electronics Letters, 2016, 52(3): 183-184. doi: 10.1049/el.2015.3449.
    RANDHAWA S K and SINGH M. Classification of heart sound signals using multi-modal features[J]. Procedia Computer Science, 2015, 58: 165-171. doi: 10.1016/j.procs. 2015.08.045.
    Bank I, VLIEGEN H W, and BRUSCHKE A V. The 200th anniversary of the stethoscope: Can this low-tech device survive in the high-tech 21st century[J]. European Heart Journal, 2016, 37(47): 3536-3543. doi: 10.1093/eurheartj /ehw034.
    赵彩华, 刘琚, 孙建德, 等. 基于小波变换和独立分量分析的含噪混叠语音盲分离[J]. 电子与信息学报, 2006, 28(9): 1565-1568.
    ZHAO Caihua, LIU Ju, SUN Jiande, et al. Blind separation of noisy speech mixtures based on wavelet transform and independent component analysis[J]. Journal of Electronics Information Technology, 2006, 28(9): 1565-1568.
    SAFARA F. Cumulant-based trapezoidal basis selection for heart sound classification[J]. Medical Biological Engineering Computing, 2015, 53(11): 1153-1164. doi: 10. 1007/s11517-015-1394-4.
    JATUPAIBOON N, PAN-NGUM S, and ISRASENA P. Electronic stethoscope prototype with adaptive noise cancellation[C]. 8th International Conference on ICT and Knowledge Engineering, Bangkok, Thailand, 2010: 32-36.
    CHENG Xiefeng and LI Wei. Research on heart-sound graphical processing methods based on heart-sounds window function[J]. Acta Physica Sinica, 2015, 64(5): 58703. doi: 10.7498/aps.64.058703.
    VARGHEES V N and RAMACHANDRAN K I. A novel heart sound activity detection framework for automated heart sound analysis[J]. Biomedical Signal Processing Control, 2014, 13(1): 174-188. doi: 10.1016/j.bspc.2014.05. 002.
    CHAKRABARTI T, SAHA S, ROY S, et al. Phonocardiogram signal analysis-practices, trends and challenges: A critical review[C]. International Conference and Workshop on Computing and Communication, Vancouver, Canada, 2015: 1-4.
    SHARMA L N. Multiscale analysis of heart sound for segmentation using multiscale hilbert envelope[C]. International Conference on ICT and Knowledge Engineering, Bangkok, Thailand, 2015: 33-37.
    SPRINGER D, TARASSENKO L, and CLIFFORD G. Logistic regression-HSMM-based heart sound segmentation [J]. IEEE Transactions on Biomedical Engineering, 2016, 63(4): 822-832. doi: 10.1109/TBME.2015.2475278.
    HOYOS C C, MURILLO-RENDON S, and CASTELLANOS- DOMINGUEZ C G. Heart Sound Segmentation in Noisy Environments[M]. Berlin: Springer, 2013: 254-263.
    PAPADANIIL C D and HADJILEONTIADIS L J. Efficient heart sound segmentation and extraction using ensemble empirical mode decomposition and kurtosis features[J]. IEEE Journal of Biomedical Health Informatics, 2014, 18(4): 1138-1152. doi: 10.1109/JBHI.2013.2294399.
    MOHAMAD M M, SH-HUSSAIN H, TING C M, et al. Heart sound monitoring system[J]. Journal of Engineering Applied Sciences, 2016, 11(7): 4748-4755.
    BRUSCO M and NAZERAN H. Development of an intelligent PDA-based wearable digital phonocardiograph[C]. Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005: 3506-3509.
    CLIFFORD G D, LIU C, MOODY B, et al. Classification of normal/abnormal heart sound recordings: the physioNet/ computing in cardiology challenge 2016[C]. Computing in Cardiology, Vancouver, Canada, 2016: 609-612.
    MOHAMMAD A, ABTAHI M, CONSTANT N, et al. Mobile phonocardiogram diagnosis in newborns using support vector machine[J]. Healthcare, 2017, 5(1): 16-26. doi: 10.3390/ healthcare5010016.
    ZHANG W, HAN J, and DENG S. Heart sound classification based on scaled spectrogram and partial least squares regression[J]. Biomedical Signal Processing Control, 2017, 32(2): 20-28. doi: 10.1016/j.bspc.2016.10.004.
    KAO W C and WEI C C. Automatic phonocardiograph signal analysis for detecting heart valve disorders[J]. Expert Systems with Applications, 2011, 38(6): 6458-6468. doi: 10.1016/j.eswa.2010.11.100.
    徐长发, 李国宽. 实用小波方法[M]. 武汉: 华中科技大学出版社, 2009: 100-101.
    XU Changfa and LI Guokuan. Practical Wavelet Method[M]. Wuhan: Huazhong University of Science Technology Press, 2009: 100-101.
    蒲秀娟, 曾孝平, 韩亮, 等. 基于最小二乘支持向量机的胎儿心电信号提取[J]. 电子与信息学报, 2009, 31(12): 2941-2947.
    PU Xiujuan, ZENG Xiaoping, HAN Liang, et al. Extraction of fetal electrocardiogram signal using least squares support vector machines[J]. Journal of Electronics Information Technology, 2009, 31(12): 2941-2947.
    KRISTOMO D, HIDAYAT R, SOESANTI I, et al. Heart sound feature extraction and classification using autoregressive power spectral density (AR-PSD) and statistics features[C]. Advances of Science and Technology for Society: Proceedings of the International Conference on Science and Technology, Yogyakarta, Indonesia, 2016: (090007-1-090007-7).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1533) PDF downloads(229) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return