| Citation: | DENG Xiaolong, ZHAI Jiayu, YIN Luanyu. Vector Influence Clustering Coefficient Based Efficient Directed Community Detection Algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2071-2080. doi: 10.11999/JEIT170102 | 
 
	                | XIE J, KELLEY S, and SZYMANSKI B K. Overlapping community detection in networks: The state-of-the-art and comparative study[J]. ACM Computing Surveys (CSUR), 2013, 45(4): 2-35. doi:  10.1145/2501654.2501657. | 
| NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133. doi:  10.1103/PhysRevE.69.066113. | 
| CLAUSET A, NEWMAN M E J, and MOORE C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(6): 066111. doi: 10.1103/PhysRevE.70. 066111. | 
| BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): 1-12. doi:  10.1088/1742-5468/2008/10/P10008. | 
| PRAT-PREZ A, DOMINGUEZ-SAL D, and LARRIBA- PEY J L. High quality, scalable and parallel community detection for large real graphs[C]. The 23rd International Conference on World Wide Web, ACM, Seoul, Korea 2014: 225-236. doi:  10.1145/2566486.2568010. | 
| ZHU X, GHAHRAMANI Z, and LAFFERTY J. Semi- supervised learning using Gaussian fields and harmonic functions[C]. International Conference on Machine Learning, Washington D.C., US, 2003, 3: 912-919. | 
| RAGHAVAN U N, ALBERT R, and KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76(3): 036106. doi:  10.1103/PhysRevE.76.036106. | 
| PONS P and LATAPY M. Computing communities in large networks using random walks[C]. International Symposium on Computer and Information Sciences. Springer Berlin Heidelberg, Krakow, Poland, 2005: 284-293. doi: 10.1007/ 11569596_31. | 
| ROSVALL M and BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences, 2008, 105(4): 1118-1123. doi:  10.1073/pnas.0706851105. | 
| LANCICHINETTI A and FORTUNATO S. Community detection algorithms: A comparative analysis[J]. Physical Review E, 2009, 80(5): 056117. doi: 10.1103/PhysRevE.80. 056117. | 
| PALLA G, DERNYI I, FARKAS I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043): 814-818. doi:  10.1038/nature03607. | 
| AHN Y Y, BAGROW J P, and LEHMANN S. Link communities reveal multi scale complexity in networks[J]. Nature, 2010, 466(7307): 761-764. doi:  10.1038/nature09182. | 
| LANCICHINETTI A, RADICCHI F, RAMASCO J J, et al. Finding statistically significant communities in networks[J]. PloS One, 2011, 6(4): e18961. doi: 10.1371/journal.pone. 0018961. | 
| YANG J and LESKOVEC J. Overlapping community detection at scale: A nonnegative matrix factorization approach[C]. The Sixth ACM International Conference on Web Search and Data Mining. ACM, Rome, Italy, 2013: 587-596. doi:  10.1145/2433396.2433471. | 
| NEWMAN M E J and CLAUSET A. Structure and inference in annotated networks[J]. Nature Communications, 2016,7: 11863. doi:  10.1038/ncomms11863. | 
| KOLLER D and FRIEDMAN N. Probabilistic Graphical Models: Principles and Techniques[M]. Massachusetts USA, MIT Press, 2009: 1-5. | 
| PRAT-PREZ A, DOMINGUEZ-SAL D, BRUNAT J M, et al. Shaping communities out of triangles[C]. The 21st ACM International Conference on Information and Knowledge Management, ACM, 2012: 1677-1681. doi: 10.1145/2396761. 2398496. | 
| LEVORATO V and PETERMANN C. Detection of communities in directed networks based on strongly p-connected components[C]. IEEE 2011 International Conference on Computational Aspects of Social Networks (CASoN), Salamanca, Spain, 2011: 211-216. doi: 10.1109/ CASON.2011.6085946. | 
| ARENAS A, DUCH J, FERNNDEZ A, et al. Size reduction of complex networks preserving modularity[J]. New Journal of Physics, 2007, 9(6): 1-14. doi:  10.1088/1367-2630/9/6/176. | 
