Advanced Search
Volume 39 Issue 11
Nov.  2017
Turn off MathJax
Article Contents
SONG Wenqing, WANG Yinghua, SHI Lihui, LIU Hongwei, BAO Zheng. SAR Target Discrimination Algorithm Based on Bag-of-words Model with Multi-feature Fusion[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2705-2715. doi: 10.11999/JEIT170086
Citation: SONG Wenqing, WANG Yinghua, SHI Lihui, LIU Hongwei, BAO Zheng. SAR Target Discrimination Algorithm Based on Bag-of-words Model with Multi-feature Fusion[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2705-2715. doi: 10.11999/JEIT170086

SAR Target Discrimination Algorithm Based on Bag-of-words Model with Multi-feature Fusion

doi: 10.11999/JEIT170086
Funds:

The National Natural Science Foundation of China (61671354, 61701379), The National Science Fund for Distinguished Young Scholars of China (61525105), The Fundamental Research Funds for the Central Universities, The Natural Science Basic Research Plan in Shaanxi Province of China (2016JQ6048)

  • Received Date: 2017-01-23
  • Rev Recd Date: 2017-08-25
  • Publish Date: 2017-11-19
  • In order to solve the SAR target discrimination problem in the real complex scenes, a SAR target discrimination method is proposed based on Bag-of-Words (BoW) model with multiple low-level features fusion. In the low-level feature extraction stage of BoW model, the SAR-SIFT feature is utilized to describe the shape information of local regions of an image sample. And also, a set of new local descriptors is used to capture the contrast information and the texture information of the local regions, which is extracted based on the traditional target discrimination features. For the fusion of different low-level features in BoW model, the image-level feature fusion strategy is implemented to generate the image global feature, which is realized by the Multiple Kernel Learning (MKL) method with L2-norm regularization. Experimental results with the MiniSAR real SAR dataset show that the proposed SAR target discrimination algorithm based on BoW model with multi-feature fusion achieves better discrimination performance compared with methods based on the traditional discrimination features and the BoW model features using single low-level descriptor.
  • loading
  • VERBOUT S M, WEAVER A L, and NOVAK L M. New image features for discriminating targets from clutter[C]. Defense Sensing and Controls. International Society for Optics and Photonics, Aerospace, 1998: 120-137. doi: 10.1117 /12.319439.
    KREITHEN D E, HALVERSEN S D, and OWIRKA G J. Discriminating targets from clutter[J]. The Lincoln Laboratory Journal, 1993, 6(1): 25-52.
    GAO Gui. An improved scheme for target discrimination in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 277-294. doi: 10.1109/TGRS.2010.2052623.
    WANG Yinghua and LIU Hongwei. A hierarchical ship detection scheme for high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 4173-4184. doi: 10.1109/TGRS.2012.2189011.
    张小强, 熊博莅, 匡纲要. 一种基于变化检测技术的SAR图像舰船目标鉴别方法[J]. 电子与信息学报, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143.
    ZHANG Xiaoqiang, XIONG Boli, and KUANG Gangyao. A ship target discrimination method based on change detection in SAR imagery[J]. Journal of Electronics Information Technology, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143.
    PARK J I, PARK S H, and KIM K T. New discrimination features for SAR automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 476-480. doi: 10.1109/LGRS.2012.2210385.
    高贵. SAR图像目标鉴别研究综述[J]. 信号处理, 2009(9): 1421-1432. doi: 10.3969/j.issn.1003-0530.2009.09.018.
    GAO Gui. Study on target discrimination in SAR images: A survey[J]. Signal Processing, 2009, 25(9): 1421-1432. doi: 10.3969/j.issn.1003-0530.2009.09.018.
    WANG Yinghua and LIU Hongwei. SAR target discrimination based on BOW model with sample-reweighted category-specific and shared dictionary learning[J]. IEEE Geoscience and Remote Sesnsing Letters, 2017 in revision.
    CSURKA G, DANCE C R, FAN L, et al. Visual categorization with bags of keypoints[C]. European Conference on Computer Vision, Prague, 2004: 1-22.
    YANG Jianchao, YU Kai, GONG Yihong, et al. Linear spatial pyramid matching using sparse coding for image classification[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, Florida, 2009: 1794-1801. doi: 10.1109/CVPR.2009.5206757.
    王瑞霞, 彭国华. N-words 模型下Hesse 稀疏表示的图像检索算法[J]. 电子与信息学报, 2016, 38(5): 1115-1122. doi: 10.11999/JEIT150617.
    WANG Ruixia and PENG Guohua. Hesse sparse representation under n-word model for image retrieval[J]. Journal of Electronics Information Technology, 2016, 38(5): 1115-1122. doi: 10.11999/JEIT150617.
    FAROOQ J. Object detection and identification using SURF and BoW model[C]. International Conference on Computing, Electronic and Electrical Engineering, Quetta, Pakistan, 2016: 318-323.
    GEMERT J C, GEUSEBROEK J M, VEENMAN C J, et al. Kernel codebooks for scene categorization[C]. European Conference on Computer Vision, Marseille, France, 2008: 696-709. doi: 10.1007/978-3-540-88690-7_52.
    BAHMANYAR R, CUI S, and DATCU M. A comparative study of Bag-of-Words and Bag-of-Topics models of EO image patches[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1357-1361. doi: 10.1109/LGRS.2015. 2402391.
    YAO W, LOFFELD O, and DATCU M. Application and evaluation of a hierarchical patch clustering method for remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2279-2289. doi: 10.1109/JSTARS.2016.2536143.
    GLEICH D and SIPOS D. Categorization based on sparse coding for SAR patch categorization[C]. European Conference on Synthetic Aperture Radar, Hamburg, 2016: 1-4.
    CUI S, SCHWARZ G, and DATCU M. Remote sensing image classification: no features, no clustering[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 5158-5170. doi: 10.1109/ JSTARS.2015.2495267.
    黄凯奇, 任伟强, 谭铁牛. 图像物体分类与检测算法综述[J]. 计算机学报, 2014, 37(6): 1225-1240. doi: 10.3724/SP.J.1016. 2014.01225.
    HUANG Kaiqi, REN Weiqiang, and TAN Tieniu. A review on image classification and detection[J]. Chinese Journal of Computers, 2014, 37(6): 1225-1240. doi: 10.3724/SP.J.1016. 2014.01225.
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94.
    DELLINGER F, DELON J, GOUSSEAU Y, et al. SAR-SIFT: A SIFT-like algorithm for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 453-466. doi: 10.1109/TGRS.2014.2323552.
    Fernando B, MUSELET D, FROMONT E, et al. Discriminative feature fusion for image classification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, Rhode Island, 2012: 3434-3441. doi: 10.1109/CVPR.2012.6248084.
    LUO Wei, YANG Jian, XU Wei, et al. Higher-level feature combination via multiple kernel learning for image classification[J]. Neurocomputing, 2015, 167(C): 209-217. doi: 10.1016/j.neucom.2015.04.075.
    LAZEBNIK S, SCHMID C, and PONCE J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 2169-2178. doi: 10.1109/CVPR.2006.68.
    BUCAK S S, JIN R, and JAIN A K. Multiple kernel learning for visual object recognition: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1354-1369. doi: 10.1109/TPAMI.2013.212.
    LI F F and PERONA P. A bayesian hierarchical model for learning natural scene categories[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005(2): 524-531. doi: 10.1109/CVPR.2005. 16.
    MIKOLAJCZYK K and SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630. doi: 10.1109/TPAMI.2005.188.
    FJORTOFT R, LOPES A, and MARTHON P. An optimal multiedge detector for SAR image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 793-802. doi: 10.1109/36.673672.
    SMITH M E and VARSHNEY P K. Intelligent CFAR processor based on data variability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 837-847. doi: 10.1109/7.869503.
    ELDARYMLI K, MCGUIRE P, POWER D, et al. Target detection in synthetic aperture radar imagery: A state- of-the-art survey[J]. Journal of Applied Remote Sensing, 2013, 7(1): 1-35. doi: 10.1117/1.JRS.7.071598.
    YU Wenyi, WANG Yinghua, and LIU Hongwei. Superpixel- based CFAR target detection for high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 730-734. doi: 10.1109/LGRS.2016.2540809.
    HE H and GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284. doi: 1263-1284.10.1109/TKDE.2008. 239.
    DING Jun, LIU Hongwei, CHEN Bo, et al. Convolutional neural network with data augmentation for SAR Target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 1-5. doi: 10.1109/LGRS.2015.2513754.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1302) PDF downloads(228) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return