Advanced Search
Volume 39 Issue 10
Oct.  2017
Turn off MathJax
Article Contents
ZHU Yun, WANG Jun, CHEN Gang, GUO Shuai. Novel Track Coalescence Avoiding Joint Integrated Probabilistic Data Association Filter[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2346-2353. doi: 10.11999/JEIT170085
Citation: ZHU Yun, WANG Jun, CHEN Gang, GUO Shuai. Novel Track Coalescence Avoiding Joint Integrated Probabilistic Data Association Filter[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2346-2353. doi: 10.11999/JEIT170085

Novel Track Coalescence Avoiding Joint Integrated Probabilistic Data Association Filter

doi: 10.11999/JEIT170085
Funds:

The National Natural Science Foundation of China (61401526), The Foundation of National Ministries (9140A07020614DZ01)

  • Received Date: 2017-01-23
  • Rev Recd Date: 2017-07-17
  • Publish Date: 2017-10-19
  • To avoid the track coalescence of the Joint Integrated Probabilistic Data Association (JIPDA), a modified version of JIPDA is proposed by modelling targets as Random Finite Set (RFS). The JIPDA first generates the original Probability Density Function (PDF) and then makes an approximation of the PDF to estimate target states. To maximize the similarity between the state estimate PDF and the original PDF, the original PDF is optimized when target label is irrelevant. Using the KL divergence as a measure of the similarity, the cost function is developed. The experimental results show that the proposed method can effectively avoid the track coalescence.
  • loading
  • CHANG K C and BAR-SHALOM Y. Joint probabilistic data association for multitarget tracking with possibly unresolved measurements and maneuvers[J]. IEEE Transactions on Automatic Control, 1984, 29(7): 585-594. doi: 10.1109/TAC. 1984.1103597.
    MUICKI D and EVANS R. Joint integrated probabilistic data association-JIPDA[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 1093-1099. doi: 10.1109/ TAES.2004.1337482.
    尹帅, 袁俊泉, 吴顺华, 等. 一种改进的JIPDA多目标跟踪算法[J]. 雷达科学与技术, 2014, 12(3): 285-290. doi: 10.3969/ j.issn.1672-2337.2014.03.011.
    YIN Shuai, YUAN Junquan, WU Shunhua, et al. An improved JIPDA algorithm for multi-target tracking[J]. Radar Science and Technology, 2014, 12(3): 285-290. doi: 10.3969/j.issn.1672-2337.2014.03.011.
    伍明, 李琳琳, 魏振华, 等. 一种未知环境下机器人多目标跟踪算法[J]. 智能系统学报, 2015, 10(3): 448-453. doi: 10.3969/ j.issn.1673-4785.201405051.
    WU Ming, LI Linlin, WEI Zhenhua, et al. A robot multi- object tracking algorithm in unknown environments[J]. CAAI Transactions on Intelligent Systems, 2015, 10(3): 448-453. doi: 10.3969/j.issn.1673-4785.201405051.
    CHEN Xin, PELLETIER M, KIRUBARAJAN T, et al. Integrated Bayesian clutter estimation with JIPDA/MHT trackers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 395-414. doi: 10.1109/TAES.2013. 6404111.
    BLOM H A P, BLOEM E A, and MUICKI D. JIPDA*: Automatic target tracking avoiding track coalescence[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 962-974. doi: 10.1109/TAES.2014.130327.
    MAHLER R. Statistical Multisource Multitarget Information Fusion[M]. London, Artech House, 2007: 5-14.
    WILLIAMS J L. Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA and association-based MeMBer[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1664-1687. doi: 10.1109/TAES.2015.130550.
    余艳. 融合KL散度和移地距离的高斯混合模型相似性度量方法[J]. 计算机应用, 2014, 34(3): 828-832. doi: 10.11772/j.issn. 1001-9081.2014.03.0828.
    YU Yan. Similarity measure method of Gaussian mixture model by integrating Kullback-Leibler divergence and earth mover's distance[J], Journal of Computer Applications, 2014, 34(3): 828-832. doi: 10.11772/j.issn.1001-9081.2014.03.0828.
    BLAHUT R E. Principles and Practice of Information Theory[M]. MA: Addison-Wesley, 1987, Chapter 7.
    SVENSSON L, SVENSSON D, and WILLETT P. Set JPDA algorithm for tracking unordered sets of targets[C]. 12th International Conference on Information Fusion, Seattle, WA, USA, 2009: 1187-1194.
    SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457. doi: 10.1109/TSP.2008.920469.
    MUICKI D and EVANS R. Clutter map information for data association and track initialization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2): 387-398. doi: 10.1109/TAES.2004.1309992.
    JING P L, XU S Y, LI X, et al. Coalescence-avoiding joint probabilistic data association based on bias removal[J]. EURASIP Journal on Advances in Signal Processing, 2015(1): 1-13. doi: 10.1186/s13634-015-0205-2.
    PANAKKAL V P and VELMURUGAN R. Effective joint probabilistic data association using maximum a posteriori estimates of target states[C]. 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 781-788.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1266) PDF downloads(200) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return