Advanced Search
Volume 39 Issue 11
Nov.  2017
Turn off MathJax
Article Contents
BAI Huiqing, JIN Liang, XIAO Shuaifang, YI Ming*. Polar Code for Physical Layer Security in Multi-antenna Systems[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2587-2593. doi: 10.11999/JEIT170068
Citation: BAI Huiqing, JIN Liang, XIAO Shuaifang, YI Ming*. Polar Code for Physical Layer Security in Multi-antenna Systems[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2587-2593. doi: 10.11999/JEIT170068

Polar Code for Physical Layer Security in Multi-antenna Systems

doi: 10.11999/JEIT170068
Funds:

The National 863 Program of China (2015AA01A708), The National Natural Science Foundation for Young Scientists of China (61501516)

  • Received Date: 2017-01-19
  • Rev Recd Date: 2017-05-12
  • Publish Date: 2017-11-19
  • A maximal-capacity-difference mapping-based secrecy polar coding method is proposed. It improves the secrecy rate by reducing the channel polarization speed. First, the polarized channels are divided into two categoryies based on the polarization structure: the good quality ones and the bad quality ones. By analyzing the eraser rates of the polarized channels, a maximal-capacity-difference mapping method is proposed. Through improving the capacity of the bad polarized channels and reducing that of the good polarized channels, the channel polarization speed decreases efficiently. Finally, weighting is adopted to modify the maximal-capacity-difference mapping results between legitimate channels and wiretap channels, thus the secrecy polar coding in multi-input channel is implemented. Simulation results verify that the secrecy rate of proposed method in binary erasure channels can be increased from 0.029 and 0.004 to 0.042, compared to the random mapping method and Arikans method at polarization ordern=9, respectively. And the proposed method also works in fading channels.
  • loading
  • KOLOKOTRONIS N, KATSIONTIS A, and KALOUPTSIDIS N. Secretly pruned convolutional codes: Security analysis and performance results[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(7): 1500-1514. doi: 10.1109/ TIFS.2016.2537262.
    WANG Bo, MU Pengcheng, WANG Chao, et al. Combining dirty-paper coding and artificial noise for secrecy[C]. IEEE International Communication on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2034-2038.
    KLINC D, JEONGSEOK H, MCLAUGHLIN S W, et al. LDPC codes for the Gaussian wiretap channel[J]. IEEE Transactions on Information Forensics Security, 2011, 6(3): 532-540. doi: 10.1109/TIFS.2011.2134093.
    BALDI M, BIANCHI M, and CHIARALUCE F. Coding with scrambling, concatenation, and HARQ for the AWGN wire-tap channel: A security gap analysis[J]. IEEE Transactions on Information Forensics Security, 2012, 7(3): 883-894. doi: 10.1109/TIFS.2012.2187515.
    YI Ming, JI Xinsheng, HUANG Kaizhi, et al. Achieving strong security based on fountain code with coset precoding[J]. IET Communications, 2014, 8(14): 2476-2483. doi: 10.1049/iet-com.2013.1033.
    ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetry binary input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051-3073. doi: 10.1109/ TIT.2009. 2021379.
    HAJIMOMENI M, AGHAEINIA H, KIM I M, et al. Cooperative jamming polar codes for multiple-access wiretap channels[J]. IET Communications, 2016, 10(4): 407-415. doi: 10.1049/iet-com.2015.0624.
    WEI Yipeng and ULUKUS S. Polar coding for the general wiretap channel with extensions to multiuser scenarios[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(2): 278-291. doi: 10.1109/JSAC.2015.2504275.
    ANDERSSON M, RATHI V, THOBABEN R, et al. Nested polar codes for wiretap and relay channels[J]. IEEE Communications Letters, 2010, 14(4): 752-754. doi: 10.1109/ LCOMM.2010.08.100875.
    MAHDAVIFAR H and VARDY A. Achieving the secrecy capacity of wiretap channels using polar codes[J]. IEEE Transactions on Information Theory, 2011, 57(10): 6428-6443. doi: 10.1109/TIT.2011.2162275.
    MIRGHASEMI H and BELFIORE J. The un-polarized bit-channels in the wiretap polar coding scheme[C]. International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace Electronic Systems, Manchester, Denmark, 2014: 1-5.
    NIU K, CHEN K, and LIN J R. Beyond turbo codes: Ratecompatible punctured polar codes[C]. IEEE International Conference on Communications, Budapest, Hungary, 2013: 3423-3427.
    易鸣, 季新生, 黄开枝, 等. 面向物理层安全的一种打孔极化编码方法[J]. 电子与信息学报. 2014, 36(12): 2835-2841. doi: 10.3724/SP.J.1146.2014.00013.
    YI Ming, JI Xinsheng, HUANG Kaizhi, et al. A method based on puncturing polar codes for physical layer security[J]. Journal of Electronics Information Technology, 2014, 36(12): 2835-2841. doi: 10.3724/SP.J.1146.2014.00013.
    GAO Y, CAI Y, SHI Q, et al. Joint transceiver designs for secure communications over MIMO relay[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 3851-3855.
    CHEN K, NIU K, and LIN J. Practical polar code construction over parallel channels[J]. IET Communications, 2013, 7(7): 620-627. doi: 10.1049/iet-com.2012.0428.
    ARIKAN E and TELATAR E. On the rate of channel polarization[C]. IEEE International Symposium on Information Theory, Seoul, South Korea, 2009: 1493-1495.
    WANG W, TEH K C, and LI K H. Artificial noise aided physical layer security in multi-antenna small-cell networks [J]. IEEE Transactions on Information Forensics and Security, 2017, 12(6): 1470-1482. doi: 10.1109/TIFS.2017. 2663336.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (813) PDF downloads(209) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return