Advanced Search
Volume 39 Issue 11
Nov.  2017
Turn off MathJax
Article Contents
WANG Hongjun, ZHOU Yu, WANG Lunwen. Establishment Algorithm of Two Dimensional Fingerprint Database for Mine Workers Based on SVR-Kriging Interpolation[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2571-2578. doi: 10.11999/JEIT170058
Citation: WANG Hongjun, ZHOU Yu, WANG Lunwen. Establishment Algorithm of Two Dimensional Fingerprint Database for Mine Workers Based on SVR-Kriging Interpolation[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2571-2578. doi: 10.11999/JEIT170058

Establishment Algorithm of Two Dimensional Fingerprint Database for Mine Workers Based on SVR-Kriging Interpolation

doi: 10.11999/JEIT170058
Funds:

The National Natural Science Foundation of China (61273302)

  • Received Date: 2017-01-16
  • Rev Recd Date: 2017-04-12
  • Publish Date: 2017-11-19
  • In order to overcome the limitation of one-dimensional model in accuracy of mine workers fingerprint location, a two-dimensional fingerprint location database algorithm for mine workers is proposed. The problem of the large data acquisition workload brought by the two-dimensional model is also solved by SVR-Kriging interpolation. Firstly, Gaussian filtering is used to preprocess the fingerprint information of the collected sampling point and the variation function is fitted by the Support Vector Regression (SVR). Then, the Kriging interpolation is used to complete the position fingerprint information of the un-sampled area in the two-dimensional meshing. Finally, the fingerprint location database of the mine workers is established by integrating the location fingerprint information of the sampling points and the interpolation points, laying the foundation for the follow-up mine workers fingerprint location. The simulation results show that the proposed algorithm can reduce the workload of data acquisition while ensuring the feasibility and the effectiveness of the algorithm and can guarantee high accuracy when positioning is performed through the location fingerprint.
  • loading
  • 胡青松, 张申, 吴立新, 等. 矿井动目标定位: 挑战、现状与趋势[J]. 煤炭学报, 2016, 41(5): 1059-1068. doi: 10.13225/ j.cnki.jccs.2015.1267.
    HU Qingsong, ZHANG Shen, WU Lixin, et al. Localization techniques of mobile objects in coal mines: Challenges, solutions and trends[J]. Journal of China Coal Society, 2016, 41(5): 1059-1068. doi: 10.13225/j.cnki.jccs.2015.1267.
    WANG Jie, GAO Qinghua, YU Yan, et al. Toward robust indoor localization based on Bayesian filter using chrip-spread-spectrum ranging[J]. IEEE Transactions on Industrial Electronics, 2012, 59(3): 1622-1629. doi: 10.1109/TIE.2011.2165462.
    WANG Jie, GAO Qinghua, PAN Miao, et al. Toward accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665-6677. doi: 10.1109/TVT.2015.2476495.
    ERRINGTON A F C, DAKU B L F, and PRUGGER A F. Initial position estimation using RFID tags: A least-squares approach[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(11): 2863-2869. doi: 10.1109/TIM. 2010.2046366.
    YU Gu and REN Fuji. Energy-efficient indoor localization of smart hand-held devices using Bluetooth[J]. IEEE Access, 2015, 3: 1450-1461. doi: 10.1109/ACCESS.2015.2441694.
    WEI Jiaxi, CHEN Yan, and SUN Shuo. An improved TDOA algorithm applied person localization system in coal mine[C]. 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Shanghai, 2011, 1: 428-431. doi: 10.1109/ICMTMA.2011.108.
    郝丽娜, 张秀均, 郁万里, 等. 基于RSS手指模的煤矿井下WLAN定位方法[J]. 传感器与微系统, 2012, 31(9): 46-49. doi: 10.13873/j.1000-97872012.09.020.
    HAO Lina, ZHANG Xiujun, YU Wanli, et al. Underground coal mine WLAN localization algorithm based on RSS fingerprinting[J]. Transducer and Microsystem Technologies, 2012, 31(9): 46-49. doi: 10.13873/j.1000-97872012.09.020.
    GUO Jiateng, JIANG Jizhou, WU Lixin, et al. 3D modeling for mine roadway from laser scanning point cloud[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016: 4452-4455. doi: 10.1109/IGARSS.2016.7730160.
    王桃. 基于位置指纹的煤矿井下定位算法研究[D]. [硕士论文], 中国矿业大学, 2015: 29-39.
    WANG Tao. Research of positioning algorithm in coal mine based on location fingerprint[D]. [Master dissertation], China University of Mining Technology, 2015: 29-39.
    JIANG Qideng, MA Yongtao, LIU Kaihua, et al. A probabilistic radio map construction scheme for crowdsourcing-based fingerprinting localization[J]. IEEE Sensors Journal, 2016, 16(10): 3764-3774. doi: 10.1109/JSEN. 2016.2535250.
    彭玉旭, 杨艳红. 一种基于RSSI的贝叶斯室内定位算法[J]. 计算机工程, 2012, 38(10): 237-240. doi: 10.3969/j.issn. 1000-3428.2012.10.073.
    PENG Yuxu and YANG Yanhong. Bayesian indoor location algorithm based on RSSI[J]. Computer Engineering, 2012, 38(10): 237-240. doi: 10.3969/j.issn.1000-3428.2012.10.073.
    XIAO Song, ROTARU M, and SYKULSKI J K. Adaptive weighted expected improvement with rewards approach in kriging assisted electromagnetic design[J]. IEEE Transactions on Magnetics, 2013, 49(5): 2057-2060. doi: 10.1109/TMGA.2013.2240662.
    ZIMOS E, TOUMPAKARIS D, MUNTEANU A, et al. Multiterminal source coding with copula regression for wireless sensor networks gathering diverse data[J]. IEEE Sensors Journal, 2017, 17(1): 139-150. doi: 10.1109/JSEN. 2016.2585042.
    WU Qiang and ZHOU Dingxuan. SVM soft margin classifiers: Linear programming versus quadratic programming[J]. Neural Computation, 2005, 17(5): 1160-1187. doi: 10.1162/ 0899766053491896.
    TAKAHASHI N, GUO J, and NISHI T. Global convergence of SMO algorithm for support vector regression[J]. IEEE Transactions on Neural Networks, 2008, 19(6): 971-982. doi: 10.1109/TNN.2007.915116.
    SHAMSHIRBAND S, PETKOVIC D, JAVIDNIA H, et al. Sensor data fusion by support vector regression methodologyA comparative study[J]. IEEE Sensors Journal, 2015, 15(2): 850-854. doi: 10.1109/JSEN.2014. 2356501.
    李明山, 王正明, 张仪. 基于均匀试验设计的支持向量回归参数选择方法[J]. 系统仿真学报, 2008, 20(8): 2195-2199. doi: 10.16182/j.cnki.joss.2008.08.067.
    LI Mingshan, WANG Zhengming, and ZHANG Yi. New method for selecting parameters of support vector machine regression based on uniform design[J]. Journal of System Simulation, 2008, 20(8): 2195-2199. doi: 10.16182/j.cnki. joss.2008.08.067.
    何飞, 方金云. 基于自适应的并行空间插值算法及仿真实现[J]. 系统仿真学报, 2014, 26(4): 761-768. doi: 10.16182/j.cnki. joss.2014.04.030.
    HE Fei and FANG Jinyun. Algorithm for spatial interpolation based on self-adaptive parallel programming[J]. Journal of System Simulation, 2014, 26(4): 761-768. doi: 10.16182/j.cnki.joss.2014.04.030.
    陈丽, 陈静, 高清涛, 等. 基于支持向量机与反K近邻的分类算法研究[J]. 计算机工程与应用, 2010, 46(24): 135-137.
    CHEN Li, CHEN Jing, GAO Qingtao, et al. Classification algorithm research based on support vector machine and reverse K-nearest neighbor[J]. Computer Engineering and Applications, 2010, 46(24): 135-137.
    NI L M, LIU Y, LAN Y C, et al. LANDMARC: Indoor location sensing using active RFID[J]. Wireless Networks, 2004, 10(6): 701-710. doi: 10.1023/B:WINE.0000044029. 06344.DD.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1398) PDF downloads(215) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return