Advanced Search
Volume 39 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
YU Dongjin, NI Zhiyong, SUN Jingchao. Extracting Dimension Hierarchy of Tweeters Interests for On-line Analytical Processing[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2081-2088. doi: 10.11999/JEIT170030
Citation: YU Dongjin, NI Zhiyong, SUN Jingchao. Extracting Dimension Hierarchy of Tweeters Interests for On-line Analytical Processing[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2081-2088. doi: 10.11999/JEIT170030

Extracting Dimension Hierarchy of Tweeters Interests for On-line Analytical Processing

doi: 10.11999/JEIT170030
Funds:

The National Natural Science Foundation of China (61100043, 61472112), The Natural Science Foundation of Zhejiang Province (LY12F02003), The Key Science and Technology Project of Zhejiang Province (2017C01010, 2016F50014)

  • Received Date: 2017-01-11
  • Rev Recd Date: 2017-08-16
  • Publish Date: 2017-09-19
  • To explore the distribution and correlation from massive Twitter data helps the accurate personalized recommendation. On-Line Analytical Processing (OLAP) provides an intuitive form that is suitable for people to explore the Twitter data. The key of applying OLAP to Twitter data is how to mine and build dimension hierarchy of tweeter interests. Different from the existing approaches that can extract interests of tweeters with only one level, an approach to the extraction of dimension hierarchy of interests for OLAP is proposed. Firstly, it retrieves the Twitter data through RestAPI. Afterwards, it detects the interests and sub-interests using an improved (Latent Dirichlet Allocation, LDA) model. Based on the extracted interests and sub-interests it finally constructs the dimension hierarchy of interests. The experiment verifies its effectiveness and scalability, and demonstrates it can extract dimension hierarchy of tweeters interests for OLAP more effectively than LDA and hLDA.
  • loading
  • ZHANG Yubao, RUAN Xin, WANG Haining, et al. Twitter trends manipulation: A first look inside the security of Twitter trending[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(1): 144-156. doi: 10.1109/ TIFS.2016.2604226.
    BEHESHTI S M R, BENATALLAH B, and MOTAHARI- NEZHAD H R. Scalable graph-based OLAP analytics over process execution data[J]. Distributed and Parallel Databases, 2016, 34(3): 379-423. doi: 10.1007/s10619-014-7171-9.
    OUKID Lamia, BENBLIDIA Nadjia, BENTAYEB Fadila, et al. Contextualized text OLAP based on information retrieval [J]. International Journal of Data Warehousing and Mining, 2015, 11(2): 1-21. doi: 10.4018/ijdwm.2015040101.
    DRZADZEWSKI G and TOMPA F W. Partial materialization for online analytical processing over multi- tagged document collections[J]. Knowledge and Information Systems, 2016, 47(3): 697-732. doi: 10.1007/s10115-015- 0871-2.
    SISWANTO E, KHODRA M L, and DEWI L J E. Prediction of interest for dynamic profile of Twitter user[C]. International Conference of Advanced Informatics: Concept, Theory and Application, Bandung, 2014: 266-271.
    LIM K H and DATTA A. Interest classification of Twitter users using Wikipedia[C]. International Symposium on Wikis and Open Collaboration, Hong Kong, 2013: 1-2.
    PU X, CHATTI M A, US H T, et al. Wiki-LDA: A mixed- method approach for effective interest mining on Twitter data[C]. The 8th International Conference on Computer Supported Education, Rome, 2016: 426-433.
    XU Z, RU L, XIANG L, et al. Discovering user interest on Twitter with a modified author-topic model[C]. IEEE/WIC/ ACM International Conference on Web Intelligence, Lyon, 2011: 422-429.
    ZHAO W X, JIANG J, WENG J S, et al. Comparing Twitter and traditional media using topic models[C]. The 33rd European Conference on IR Research, Dublin, 2011: 338-349.
    BLEI D M, GRIFFITH T L, JORDAN M I, et al. Hierarchical topic models and the nested Chinese restaurant process[C]. International Conference on Neural Information Processing Systems, Vancouver, 2003: 17-24.
    OUKID L, BOUSSAID O, BENBLIDIA N, et al. TLabel: A new OLAP aggregation operator in text cubes[J]. International Journal of Data Warehousing and Mining, 2016, 12(4): 54-74. doi: 10.4018/IJDWM.2016100103.
    BERBEL TDRL and GONZLEZ SM. How to help end users to get better decisions? personalising OLAP aggregation queries through semantic recommendation of text documents[J]. International Journal of Business Intelligence Data Mining, 2015, 10(1): 1-18. doi: 10.1504/ IJBIDM.2015.069022.
    BOUAKKAZ M, LOUDCHER S, and OUINTEN Y. OLAP textual aggregation approach using the Google similarity distance[J]. International Journal of Business Intelligence Data Mining, 2016, 11(1): 31-48. doi: 10.1504/IJBIDM.2016. 076425.
    BEN K M, FEKI J, KHROUF K, et al. OLAP of the tweets: from modeling toward exploitation[C]. The 8th International Conference on Research Challenges in Information Science IEEE, Marrakech, 2014: 1-10.
    REHMAN N U, MANSMANN S, WEILER A, et al. Building a data warehouse for Twitter stream exploration[C]. IEEE/ ACM International Conference on Advances in Social Networks Analysis and Mining, Istanbul, 2012: 1341-1348.
    REHMAN N U, WEILER A, and SCHOLL M H. OLAPing social media: The case of Twitter[C]. IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Niagara, Ontario, Canada, 2013: 1139-1146.
    BLEI D M, NG A Y, and JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1): 993-1022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1305) PDF downloads(271) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return