Advanced Search
Volume 39 Issue 10
Oct.  2017
Turn off MathJax
Article Contents
HAN Min, CHENG Xu, LI Dengwang. Fast 3D Reconstruction Algorithm of Multi-resolution Cone Beam CT Image Based on Wavelet Transform[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2437-2441. doi: 10.11999/JEIT170003
Citation: HAN Min, CHENG Xu, LI Dengwang. Fast 3D Reconstruction Algorithm of Multi-resolution Cone Beam CT Image Based on Wavelet Transform[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2437-2441. doi: 10.11999/JEIT170003

Fast 3D Reconstruction Algorithm of Multi-resolution Cone Beam CT Image Based on Wavelet Transform

doi: 10.11999/JEIT170003
Funds:

The National Natural Science Foundation of China (61471226), The Distinguished Young Scholars of Shandong Province(JQ201516)

  • Received Date: 2017-01-03
  • Rev Recd Date: 2017-04-05
  • Publish Date: 2017-10-19
  • To solve the large amount of computation, time-consuming problems of the FDK reconstruction algorithm for cone beam CT reconstruction, and different resolutions for different application environments of 3D medical image, this paper proposes a fast reconstruction algorithm of multi-resolution cone beam CT image based on wavelet transform. Firstly, the corresponding wavelet transform for projection images are obtained, and the corresponding scale wavelet coefficients are selected for FDK reconstruction. Thus, 3D image data of the low resolution are obtained. According to need, the high resolution 3D image data can also be obtained by the inverse wavelet transform of the radial images obtained from low resolution. The experimental data shows that this method can not only provide a different resolution of the 3D image data, but also increase the reconstruction speed more than one times when the same resolution and similar precision high resolution 3D image data is obtained compared with the traditional FDK algorithm.
  • loading
  • ZOU Xiaobing and ZENG Li. Weighted FDK algorithm from spiral cone-beam computed tomography with displaced detector[J]. Journal of Medical Imaging and Health Informatics, 2015, 5(2): 290-295. doi: 10.1166/jmihi.2015.1389.
    闫镔, 韩玉, 魏峰, 等. 锥束CT超视野成像重建算法综述[J]. CT理论与应用研究, 2013, 22(2): 373-384.
    YAN Bin, HAN Yu, WEI Feng, et al. Review of algorithms for over FOV size object in cone-beam CT[J]. ComputerizedTomography Theory and Application, 2013, 22(2): 373-384.
    FELDKAMP L, DAVIS L C, and KRESS J. Practical conebeam algorithm[J]. Journal of the Optical Society of America A, 1984, 1(6): 612-619. doi: 10.1364/JOSAA. 1.000612.
    WANG Ge, LIN Teinhsiang, and CHENG Pingchin. A general cone-beam reconstruction algorithm[J]. IEEE Transactions on Medical Imaging, 1993, 12(3): 486-496. doi: 10.1109/42.241876.
    TURBELL H. Cone-beam reconstruction using filtered backprojection[D]. [Ph.D. dissertation], The Linkoping University, 2001.
    GRASS M, KOHLER T, and PROKSA R. Angular weighted hybrid cone-beam CT reconstruction for circular trajectories
    [J]. Physics in Medicine Biology, 2001, 46(6): 1595-1610. doi: 10.1088/0031-9155/46/6/301.
    JIN Xinyu, BAI Fudong, and LAN Yizheng. A novel interpolation algorithm to improve FDK performance[C]. International Symposium on Computational Intelligence and Design, Hangzhou, 2015: 247-249. doi: 10.1109/ISCID.2015.37.
    DOMINGUEZ J, ASSIS J, et al. Speeding up the FDK Algorithm for tomographic image reconstruction in multicore processors with hyper-threading technology[J]. IEEE Latin America Transactions, 2015, 13(1): 359-364. doi: 10.1109/
    TLA.2015.7040670.
    张文昆, 闫镔, 蔡爱龙, 等. 选择性重排FDK算法及其GPU加速优化[J]. CT理论与应用研究, 2015, 24(3): 383-392. doi: 10.15953/j.1004-4140.2015.24.03.07.
    ZHANG Wenkun, YAN Bin, CAI Ailong, et al. Selective
    projection-rebin FDK algorithm and its efficient GPU implementation[J]. Computerized Tomography Theory and
    Application, 2015, 24(3): 383-392. doi: 10.15953/j.1004-4140.2015.24.03.07.
    GUO Bin, LIU Bo, and ZHOU Fugen. A modified FDK with misaligned parameters of flat-panel detector in cone-beamCT[C]. IEEE International Conference on Medical Imaging Physics and Engineering, Shenyang, 2013: 223-227. doi: 10.
    ZHANG Yan. Three-dimensional image quality evaluation
    and improvement in flat-panel detector based cone-beam CT
    image[D]. [Ph.D. dissertation], The Rochester University, 2009.
    MALLAT S G. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693. doi: 10.1109/34.192463.
    WANG Yu, OU Zongying, and WANG Feng. Modified FDKalgorithm for cone-beam reconstruction with efficient
    weighting scheme[C]. World Congress on Intelligent Control
    and Automation, Dalian, 2006: 9703-9707. doi: 10.1109/ WCICA.2006.1713887.
    ZHANG Feng, YAN Bin, and LI Lei. An image reconstructionstrategy for truncated projections of planar object in cone- beam CT[C]. International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, 2015: 1113-1117. doi: 10.1109/FSKD.2015.7382098.
    YANG Hongcheng, GAO Xin, XU Chuan, et al. A backprojection weight-based FDK reconstruction algorithm for cone beam digital subtraction angiography[C]. InternationalConference on Biomedical Engineering and Informatics, Chongqing, 2012: 1-5. doi: 10.1109/BMEI.2012.6513031.
    /ICMIPE.2013.6864539.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1349) PDF downloads(267) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return