Advanced Search
Volume 39 Issue 8
Aug.  2017
Turn off MathJax
Article Contents
MIN Fuhong, WANG Yaoda, Dou Yiping. Analysis and Control of Chaotic Oscillation in Fractional-order Power System with Excitation Model[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1993-1999. doi: 10.11999/JEIT161398
Citation: MIN Fuhong, WANG Yaoda, Dou Yiping. Analysis and Control of Chaotic Oscillation in Fractional-order Power System with Excitation Model[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1993-1999. doi: 10.11999/JEIT161398

Analysis and Control of Chaotic Oscillation in Fractional-order Power System with Excitation Model

doi: 10.11999/JEIT161398
Funds:

The National Natural Science Foundation of China (51475246), The Natural Science Foundation of Jiangsu Province (BK20131402)

  • Received Date: 2016-12-29
  • Rev Recd Date: 2017-03-01
  • Publish Date: 2017-08-19
  • Based on the four-order power system model, a fractional-order power system model with excitation model is presented in this paper and the dynamic properties of the fractional-order system are investigated and controlled. Firstly, the fractional-order power system of 4D is given and then the minimum order for existence of chaotic oscillation in power system with fixed parameters is achieved through bifurcation diagram and maximum Lyapunov exponent. Secondly, the influence of mechanical power, damping coefficient and excitation gain on system dynamics behavior is studied respectively. The bifurcation diagrams and Lyapunov exponent spectrum of the system are plotted through numerical simulations, respectively. In addition, the coexistence of attractors with different initial conditions in the same system is investigated. Finally, from the stability theory of fractional-order system and nonlinear feedback control theory, a synchronous controller of two power systems with different initials is designed, and numerical simulations show the effectiveness of the controller.
  • loading
  • 王宝华, 杨成梧, 张强. 电力系统分岔与混沌研究综述[J]. 电工技术学报, 2005, 20(7): 1-10.
    WANG Baohua, YANG Chengwu, and ZHANG Qiang. Summary of bifurcation and chaos research in electric power system[J]. Transactions of China Electrotechnical Society, 2005, 20(7): 1-10.
    NI Junkang, LIU Ling, LIU Chongxin, et al. Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system[J]. IEEE Transactions Circuits and Systems-II: Express Briefs, 2017, 64(2): 151-155. doi: 10.1109/TCSII.2016.2551539.
    杨珺, 王雅光, 孙秋野, 等. 智能电网的失稳与混沌[J]. 东北大学学报(自然科学版), 2016, 37(1): 6-10. doi: 10.3969/j.issn. 1005-3026.2016.01.002.
    YANG Jun, WANG Yaguang, SUN Qiuye, et al. Instability and chaos of smart grid[J]. Journal of Northeastern University (Natural Science), 2016, 37(1): 6-10. doi: 10.3969/ j.issn.1005-3026.2016.01.002.
    余晓丹, 贾宏杰, 王成山. 时滞电力系统全特征谱追踪算法及其应用[J]. 电力系统自动化, 2012, 36(24): 10-14. doi: 10.3969 /j.issn.1000-1026.2012.24.003.
    YU Xiaodan, JIA Hongjie, and WANG Chengshan. An eigenvalue spectrum tracing algorithm and its application in time delay power systems[J]. Automation of Electric Power Systems, 2012, 36(24): 10-14. doi: 10.3969/j.issn.1000-1026. 2012.24.003.
    VENKATASUBRAMANIAN V and JI W. Coexistence of four different attractors in a fundamental power system model[J]. IEEE Transactions on Circuits and Systems : Fundamental Theory and Applications, 1999, 46(3): 405-409.
    MIN Fuhong, WANG Yaoda, PENG Guangya, et al. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation[J]. AIP Advances, 2016, 6(8): 08521401-08521411. doi: 10.1063/ 1.4961696.
    MA Meiling and MIN Fuhong. Bifurcation behavior and coexisting motions in a time-delayed power system[J]. Chinese Physics B, 2015, 24(3): 03050101-03050109. doi: 10. 1088/1674-1056/24/3/030501.
    胡建兵, 赵灵冬. 分数阶系统稳定性理论与控制研究[J]. 物理学报, 2013, 62(24): 24050401-24050407. doi: 10.7498/aps.62. 240504.
    HU Jianbing and ZHAO Lingdong. Stability theorem and control of fractional systems[J]. Acta Physica Sinica, 2013, 62(24): 24050401-24050407. doi: 10.7498/aps.62.240504.
    谭文, 张敏, 李志攀. 分数阶互联电力系统混沌振荡及其同步控制[J]. 湖南科技大学学报(自然科学版), 2011, 26(2): 74-78.
    TAN Wen, ZHANG Min, and LI Zhipan. Chaotic oscillation of interconnected power system and its synchronization[J]. Journal of Hunan University of Science Technology (Natural Science Edition), 2011, 26(2): 74-78.
    张友安, 余名哲, 耿宝亮. 基于投影法的不确定分数阶混沌系统自适应同步[J]. 电子与信息学报, 2015, 37(2): 455-460. doi: 10.11999/JEIT140514.
    ZHANG Youan, YU Mingzhe, and GENG Baoliang. Adaptive synchronization of uncertain fractional-order chaotic systems based on projective method[J]. Journal of Electronics Information Technology, 2015, 37(2): 455-460. doi: 10.11999/JEIT140514.
    王诗兵, 王兴元. 超混沌复系统的自适应广义组合复同步及参数辨识[J]. 电子与信息学报, 2016, 38(8): 2062-2067. doi: 10.11999/JEIT160101.
    WANG Shibing and WANG Xingyuan. Adaptive generalized combination complex synchronization and parameter identification of hyperchaotic complex systems[J]. Journal of Electronics Information Technology, 2016, 38(8): 2062-2067. doi: 10.11999/JEIT160101.
    董俊, 张广军. 异结构的分数阶超混沌系统函数投影同步及参数辨识[J]. 电子与信息学报, 2013, 35(6): 1371-1375. doi: 10.3724/SP.J.1146.2012.01463.
    DONG Jun and ZHANG Guangjun. Function projective synchronization and parameter identification of different fractional-order hyper-chaotic systems[J]. Journal of Electronics Information Technology, 2013, 35(6): 1371-1375. doi: 10.3724/SP.J.1146.2012.01463.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1291) PDF downloads(308) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return