Advanced Search
Volume 39 Issue 10
Oct.  2017
Turn off MathJax
Article Contents
JIN Yan, WU Yanfeng, JI Hongbing. Parameter Estimation of FH Signals Based on Stable Noise Sparsity and Optimal Match[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2413-2420. doi: 10.11999/JEIT161397
Citation: JIN Yan, WU Yanfeng, JI Hongbing. Parameter Estimation of FH Signals Based on Stable Noise Sparsity and Optimal Match[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2413-2420. doi: 10.11999/JEIT161397

Parameter Estimation of FH Signals Based on Stable Noise Sparsity and Optimal Match

doi: 10.11999/JEIT161397
Funds:

The National Natural Science Foundation of China (61201286), The Natural Science Foundation of Shaanxi Province (2014JM8304), The Fundamental Research Funds for the Central Universities (K5051202013)

  • Received Date: 2016-12-29
  • Rev Recd Date: 2017-06-14
  • Publish Date: 2017-10-19
  • Currently, FH signal parameter estimation methods based on compressed sensing are mostly under the assumption of Gaussian noise background. In non-Gaussianstable distribution noise conditions, the algorithms based on Gaussian noise model suffer undesirable performance degradation. In this paper, it is analyzed and concluded that the spike pulses of the stable noise approximately meet sparse conditions. By using the differences of the characteristics in the time domain, the FH signal and the noise can be easily separated, and the goal of suppressing noise can be achieved. Under the framework of compressed sensing, the three-parameter dictionary is constructed based on the characteristics of FH signals, then the Optimal Match (OM) for adaptive FH signal decomposition is used to obtain the matching atoms and the FH signal parameters are estimated based on the information contained by these time frequency atoms. Simulation results show that compared with the conventional FH signal parameter estimation methods, the proposed Sparsity-OM (SOM), which uses noise sparsity to suppress the noise and then adopts the OM algorithm, improves the estimation accuracy of FH signal parameters and it is more robust to the stable distribution noise.
  • loading
  • ZHAO L, WANG L, and BI G. Blind frequency hopping spectrum estimation: A Bayesian approach[C]. IEEE Fourth International Conference on Big Data and Cloud Computing, IEEE, 2015: 669-675. doi: 10.1109/BDCloud.2014.137.
    吕晨杰. 基于时频分析的跳频信号检测与参数估计技术[D]. [硕士论文]. 解放军信息工程大学, 2015.
    L Chenjie. Detection and parameters estimation of frequency hopping signals based on time-frequency analysis [D]. [Master dissertation], PLA Information Engineering University, 2015.
    ZHANG H, CHEN C F, and WANG H Q. A parameter estimation method for FH signal based on SPWVD[J]. The Journal of China Universities of Posts and Telecommunications, 2011, 18: 133-136.
    CHAVALI V G and SILVA C R C M D. Detection of digital amplitude-phase modulated signals in symmetric alpha- stable noise[J]. IEEE Transactions on Communications, 2012, 60(11): 3365-3375.
    ZENG Y, LIU X, and LI O. A new method of Frequency- Hopping (FH) signal detection[J]. Journal of Electronics (China), 2011, 28(4): 468-473.
    陈立军, 张海勇, 韩东, 等. 局域波分析在跳频信号参数估计中的应用[J]. 电声技术, 2015, 39(10): 61-64. doi: 10.16311/j. audioe.2015.10.14.
    CHEN Lijun, ZHANG Haiyong, HAN Dong, et al. Application of local wave analysis in the parameter estimation of frequency-hopping signal[J]. Audio Engineering, 2015, 39(10): 61-64. doi: 10.16311/j.audioe.2015.10.14.
    郭建涛, 刘瑞杰, 陈新武. 用于跳频分量选取的修正适应度距离比粒子群算法[J]. 重庆邮电大学学报(自然科学版), 2015, 27(1): 27-30. doi: 10.3979/j.issn.1673-825X.2015.01.005.
    GUO Jiantao, LIU Ruijie, and CHEN Xinwu. Modified fitness-distance ratio based particle swarm optimizer for selection of frequency hopping components[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(1): 27-30. doi: 10.3979/j. issn.1673-825X.2015.01.005.
    WU Z and HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proceedings of the Royal Society A, 2004, 460: 1597-1611.
    AN J K, TIAN B, and YI K C. Intrinsic time-scale decompositiom based algorithm for the hop rate estimation of frequency hopping signal[J]. Systems Engineering and Electronics, 2011, 33(1): 166-169.
    吕晨杰, 王斌, 王开勋. 采用图像处理的跳频信号参数盲估计[J]. 电讯技术, 2015, 55(8): 842-847. doi: 10.3969/j.issn.1001- 893x.2015.08.003.
    L Chenjie, WANG Bin, and WANG Kaixun. Blind parameter estimation of frequency hopping signals by image processing[J]. Telecommunication Engineering, 2015, 55(8): 842-847. doi: 10.3969/j.issn.1001-893x.2015.08.003.
    JIN Y and LIU J. Parameter estimation of frequency hopping signals in alpha stable noise environment[C]. IEEE, Proceedings of 11th International Conference on Signal Processing, Beijing, China, 2013: 250-253.
    DAVID W, GONZALEZ J G, and ARCE G R. Robust time- frequency representations for signals in alpha stable noise using fractional lower-order statistics[C]. IEEE Signal Processing Workshop on Higher-Order Statistics, Banff, Alberta, Canada, 1997: 415-419.
    YUE B, PENG Z, and HE Y. Impulsive noise suppression using fast myriad filter in seismic signal processing[C]. International Conference on Computational and Information Sciences, IEEE Computer Society, 2013: 1001-1004.
    BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 56(4): 118-120.
    ADCOCK B and HANSEN A C. Generalized sampling and infinite-dimensional compressed sensing[J]. Foundations of Computational Mathematics, 2015, 16(5):1263-1323.
    BARANIUK R G, CEVHER V, DUARTE M F, et al. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001.
    STANKOVIC L, STANKOVIO S, and OROVIC I. Robust time-frequency analysis based on the L-estimation and compressive sensing[J]. IEEE Signal Processing Letters, 2013, 20(5): 499-502.
    CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    金艳, 李曙光, 姬红兵. 基于柯西分布的跳频信号参数最大似然估计方法[J]. 电子与信息学报, 2016, 38(7): 1696-1702. doi: 10.11999/JEIT151029.
    JIN Yan, LI Shuguang, and JI Hongbing. Maximum- likelihood estimation for frequency-hopping parameters by cauchy distribution[J]. Journal of Electronics Information Technology, 2016, 38(7): 1696-1702. doi: 10.11999/ JEIT151029.
    ZHANG C M, YIN Z K, and XIAO M X. Redundant dictionary based signal over-complete representation and sparse decomposition[J]. Chinese Science Bulletin, 2006, 51(6): 628-633.
    FAN H, GUO Y, and FENG X. Blind parameter estimation of frequency hopping signals based on matching pursuit[C]. International Conference on Wireless Communications, Networking and Mobile Computing, IEEE, 2008: 1-5.
    BULTAN A. A four-parameter atomic decomposition of chirplets[J]. IEEE Transactions on Signal Processing, 1997, 47(3): 731-745.
    DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. Asilomar Conference on Signals, Systems and Computers, IEEE, 2008: 581-587.
    范海宁, 郭英, 艾宇. 基于原子分解的跳频信号盲检测和参数盲估计算法[J]. 信号处理, 2010, 26(5): 695-702.
    FAN Haining, GUO Ying, and AI Yu. Blind detection and parameter estimation algorithm based on atomic decomposition[J]. Signal Processing, 2010, 26(5): 695-702.
    金艳, 朱敏, 姬红兵. Alpha 稳定分布噪声下基于柯西分布的相位键控信号码速率最大似然估计[J]. 电子与信息学报, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180.
    JIN Yan, ZHU Min, and JI Hongbing. Cauchy distribution based maximum-likelihood estimator for symbol rate of phase shift keying signals in alpha stable noise environment[J]. Journal of Electronics Information Technology, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1290) PDF downloads(248) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return