Advanced Search
Volume 39 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
ZHANG Ying, ZHU Daiyin, YU Xiang, MAO Xinhua. Approach to Moving Targets Shadow Detection for VideoSAR[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2197-2202. doi: 10.11999/JEIT161394
Citation: ZHANG Ying, ZHU Daiyin, YU Xiang, MAO Xinhua. Approach to Moving Targets Shadow Detection for VideoSAR[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2197-2202. doi: 10.11999/JEIT161394

Approach to Moving Targets Shadow Detection for VideoSAR

doi: 10.11999/JEIT161394
Funds:

The National Natural Science Foundation of China (61671240), The Natural Science Foundation of Jiangsu Province for Youths (BK20150730), The Fundamental Research Funds for the Central Universities (NZ2016105), The Foundation of Graduate Innovation Center in NUAA (kfjj20170401)

  • Received Date: 2016-12-29
  • Rev Recd Date: 2017-04-24
  • Publish Date: 2017-09-19
  • In the image sequence obtained by the high frame rate Video Synthetic Aperture Radar (VideoSAR) mode, the Doppler shift results in some shadows of the moving targets in their actual position, and a strong correlation exists between adjacent frames. Based on the above rationale, this paper proposes an approach to detecting moving targets shadow in VideoSAR imagery. First, the Scale-Invariant Feature Transform (SIFT) with RANdom SAmple Consensus (RANSAC) registration algorithm is used to compensate for the change of background of each frame, and the CattePM model is employed to suppress the speckle noise effectively. Then, in order to separate the targets and the background and generate binary images automatically, a threshold segmentation algorithm, called maximizing the Tsallis entropy, is applied. Finally, shadow detection is accomplished by the background difference with three frame difference method, and the detection results are marked on the corresponding position in the original frame. Experimental results utilizing the VideoSAR imaging fragment published by Sandia National Laboratories show that multiple moving vehicles are detected effectively, hence the validity of the approach is demonstrated.
  • loading
  • WELLS L, SORENSEN K, DOERRY A, et al. Developments in SAR and IFSAR systems and technologies at Sandia national laboratories[C]. 2003 IEEE Aerospace Conference Proceedings, Big Sky, Montana, USA, 2003, Vol. 2: 1085-1095. doi: 10.1109/AERO.2003.1235522.
    MILLER J, BISHOP E, and DOERRY A. An application of backprojection for video SAR image formation exploiting a subaperature circular shift register[C]. Proceedings of SPIE Defense, Security, and Sensing, Baltimore, Maryland, USA, 2013: 874609.
    LIU B, ZHANG X P, TANG K, et al. Spaceborne video-SAR moving target surveillance system[C]. 2016 IEEE International Geoscience and Remote Sensing Sympsium, Beijing, China, 2016: 2348-2351. doi: 10.1109/IGARSS.2016. 7729606.
    ZHAO S, CHEN J, YANG W, et al. Image formation method for spaceborne video SAR[C]. 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar, Marina Bay Sands, Singapore, 2015: 148-151. doi: 10.1109/APSAR.2015. 7306176.
    DAMINI A, MANTLE V, and DAVIDSON G. A new approach to coherent change detection in VideoSAR imagery using stack averaged coherence[C]. 2013 IEEE Radar Conference, Ottawa, Ontario, Canada, 2013: 1-5. doi: 10.1109/RADAR.2013.6586152.
    HAWLEY R W and GARBER W L. Aperture weighting technique for video synthetic aperture radar[C]. Proceedings of SPIE Defense, Security, and Sensing, Orlando, Florida, USA, 2011: 805107.
    RAYNAL A M, BICKEL D L, and DOERRY A W. Stationary and moving target shadow characteristics in synthetic aperture radar[C]. Proceedings of SPIE Defense, Security, and Sensing, Baltimore, Maryland, USA, 2014: 90771B.
    JAHANGIR M. Moving target detection for synthetic aperture radar via shadow detection[C]. 2007 IET International Conference on Radar Systems, Edinburgh, UK, 2007: 1-5. doi: 10.1049/cp:20070659.
    史洪印, 侯志涛, 郭秀花, 等. 基于阴影检测的单幅高分辨SAR 图像动目标检测方法[J]. 信号处理, 2012, 28(12): 1706-1713. doi: 10.3969/j.issn.1003-0530.2012.12.011.
    SHI Hongyin, HOU Zhitao, GUO Xiuhua, et al. Moving targets indication method in single high resolution SAR imagery based on shadow decetion[J]. Journal of Signal Processing, 2012, 28(12): 1706-1713. doi: 10.3969/j.issn.1003- 0530.2012.12.011.
    史洪印, 张诺. 基于稀疏表示和道路辅助的单幅SAR图像运动目标检测方法[J]. 电子学报, 2015, 43(3): 431-439. doi: 10.3969/j.issn.0372-2112.2015.03.003.
    SHI Hongyin and ZHANG Nuo. Moving targets indication method in single SAR imagery based on sparse representation and road information[J]. Acta Electronica Sinica, 2015, 43(3): 431-439. doi: 10.3969/j.issn.0372-2112.2015.03.003.
    张小强, 熊博莅, 匡纲要. 一种基于变化检测技术的 SAR 图像舰船目标鉴别方法[J]. 电子与信息学报, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143.
    ZHANG Xiaoqiang, XIONG Boli, and KUANG Gangyao. A ship target discrimination method based on change detection in SAR imagery[J]. Journal of Electronics Information Technology, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143.
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
    申浩, 李书晓, 申意萍, 等. 航拍视频帧间快速配准算法[J]. 航空学报, 2013, 36(6): 1405-1413. doi: 10.7527/S1000-6893. 2013.0239.
    SHEN Hao, LI Shuxiao, SHEN Yiping, et al. Fast interframe registration method in aerial videos[J]. Acta Aeronautica et Astronautica Sinica, 2013, 36(6): 1405-1413. doi: 10.7527/ S1000-6893.2013.0239.
    CATTE F, LIONS P, MOREL J, et al. Image selective smoothing and edge detection by nonlinear diffusion[J]. SIAM Journal on Numerical Analysis, 1992, 29(3): 182-193.
    ALBUQUERQUE M P, ESQUEF I A, and GESUALDI MELLO A R. Image thresholding using Tsallis entropy[J]. Pattern Recognition Letters, 2004, 25(9): 1059-1065. doi: 10.1016/j.patrec.2004.03.003.
    TSAI D M and LAI S C. Independent component analysis- based background subtraction for indoor surveillance[J]. IEEE Transactions on Image Processing, 2009, 18(1): 158-167. doi: 10.1109/TIP.2008.2007558.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1940) PDF downloads(377) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return