Advanced Search
Volume 39 Issue 10
Oct.  2017
Turn off MathJax
Article Contents
LIU Jing, LI Xiaochao, ZHU Kaijian, HUANG Kaiyu. Distributed Compressed Sensing Based Remote Sensing Image Fusion Algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2374-2381. doi: 10.11999/JEIT161393
Citation: LIU Jing, LI Xiaochao, ZHU Kaijian, HUANG Kaiyu. Distributed Compressed Sensing Based Remote Sensing Image Fusion Algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2374-2381. doi: 10.11999/JEIT161393

Distributed Compressed Sensing Based Remote Sensing Image Fusion Algorithm

doi: 10.11999/JEIT161393
Funds:

The Innovation Foundation of CAST (J20141110), The National Natural Science Foundation of China (61573276), The National 973 Program of China (2013CB329405)

  • Received Date: 2016-12-23
  • Rev Recd Date: 2017-06-15
  • Publish Date: 2017-10-19
  • The conventional Compressed Sensing (CS) based remote sensing image fusion algorithm does not consider the correlation between the source images. In this paper, a novel Distributed CS (DCS) based remote sensing image fusion algorithm is proposed to address the correlation between the source images. The proposed algorithm extracts the common part and the unique part of the low frequency information of the source images, in the framework of Joint Sparsity Model-1 (JSM-1). The Unique Feature Addition (UFA) rule is then used to improve the fusion performance. In the experiments, the QuickBird images are utilized to evaluate the performance of the proposed algorithm. The experimental results demonstrate that the fusion performance is significantly improved using the proposed algorithm, compared with several classical fusion algorithms.
  • loading
  • 张晓, 薛月菊, 涂淑琴, 等. 基于结构组稀疏表示的遥感图像融合[J]. 中国图象图形学报, 2016, 21(8): 1106-1118. doi: 10.11834/jig.20160815.
    ZHANG Xiao, XUE Yueju, TU Shuqin, et al. Remote sensing image fusion based on structural group sparse representation [J]. Journal of Image and Graphics, 2016, 21(8): 1106-1118. doi: 10.11834/jig.20160815.
    RAHMANI S, STRAIT M, MERKURJEV D, et al. An adaptive IHS pan-sharpening method[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 746-750. doi: 10.1109/LGRS.2010.2046715.
    OTAZU X, GONZALEZ-AUDICANA M, FORS O, et al. Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods[J]. IEEE Transactions on Geoscience Remote Sensing, 2005, 43(10): 2376-2385. doi: 10.1109/TGRS.2005.856106.
    AIAZZI B, ALPARONE L, BARONTI S, et al. MTF- tailored multiscale fusion of high-resolution MS and Pan imagery[J]. Photogrammetric Engineering Remote Sensing, 2006, 72(5): 591-596. doi: 10.14358/PERS.72.5.591.
    金益如, 杨学志, 董张玉, 等. 一种NSST与稀疏表示相结合的遥感图像融合算法[J]. 地理与地理信息科学, 2016, 32(2): 60-66. doi: 10.3969/j.issn.1672-0504.2016.02.012.
    JIN Yiru, YANG Xuezhi, DONG Zhangyu, et al. A new algorithm for remote sensing image fusion based on NSST and sparse representation[J]. Geography and Geo- Information Science, 2016, 32(2): 60-66. doi: 10.3969/j.issn. 1672-0504.2016.02.012.
    ZHU Fuzhen, HE Hongchang, WANG Xiaofei, et al. A new multi-spectral image fusion algorithm based on compressive sensing[C]. The Fifth International Conference on Instrumentation Measurement, Computer, Communication and Control, Qinhuangdao, 2015: 1904-1908. doi: 10.1109/IMCCC.2015.404.
    VICINANZA M R, RESTAINO R, VIVONE G, et al. A pansharpening method based on the sparse representation of injected details[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 180-184. doi: 10.1109/LGRS.2014. 2331291.
    DUARTE M F, SARVOTHAM S, BARON D, et al. Distributed compressed sensing of jointly sparse signals[C]. Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, 2005: 1537-1541. doi: 10.1109/ACSSC.2005.1600024.
    黄立勤, 陈财淦. 全景图拼接中图像融合算法的研究[J]. 电子与信息学报, 2014, 36(6): 1292-1298. doi: 10.3724/SP.J.1146. 2013.01220.
    HUANG Liqin and CHEN Caigan. Study on image fusion algorithm of panoramic image stitching[J]. Journal of Electronics Information Technology, 2014, 36(6): 1292-1298. doi: 10.3724/SP.J.1146.2013.01220.
    YIN Haitao and LI Shutao. Multimodal image fusion with joint sparsity model[J]. Optical Engineering, 2011, 50(6): 409-421. doi: 10.1117/1.3584840.
    张颖超, 茅丹, 胡凯. 压缩传感理论在心电图信号恢复问题上的研究[J]. 计算机研究与发展, 2014, 51(5): 1018-1027. doi: 10.7554/issn1000-1239.2014.20121161.
    ZHANG Yingchao, MAO Dan, and HU Kai. ECG signal recovery problem based on compressed sensing theory[J]. Journal of Computer Research and Development, 2014, 51(5): 1018-1027. doi: 10.7554/issn1000-1239.2014.20121161.
    CANDES E and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. doi: 10.1109/TIT.2005.858979.
    LI Shutao and YANG Bin. A new pan-sharpening method using a compressed sensing technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 738-746. doi: 10.1109/TGRS.2010.2067219.
    VIVONE G, ALPARONE L, CHANUSSOT J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2565-2586. doi: 10.1109/TGRS.2014.2361734.
    RANCHIN T and WALD L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation[J]. Photogrammetric Engineering Remote Sensing, 2000, 66: 49-61.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1479) PDF downloads(314) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return