Advanced Search
Volume 39 Issue 10
Oct.  2017
Turn off MathJax
Article Contents
TU Yuanfei, YANG Geng, YUAN Fengjie. Secure and Efficient Attribute Based Access Control for Brain-computer Interface[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2495-2503. doi: 10.11999/JEIT161362
Citation: TU Yuanfei, YANG Geng, YUAN Fengjie. Secure and Efficient Attribute Based Access Control for Brain-computer Interface[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2495-2503. doi: 10.11999/JEIT161362

Secure and Efficient Attribute Based Access Control for Brain-computer Interface

doi: 10.11999/JEIT161362
Funds:

The National Natural Science Foundation of China (61572263, 61272084), The Natural Science Foundation of the Jiangsu Province Higher Education Institutions of China (11KJA520002), The Specialized Research Fund for the Doctoral Program of Higher Education (20113223110003), China Postdoctoral Science Foundation (2015M581794), Jiangsu Province Planned Projects for Postdoctoral Research Funds (1501023C), NUPTSF (NY214127)

  • Received Date: 2016-12-13
  • Rev Recd Date: 2017-07-11
  • Publish Date: 2017-10-19
  • Brain-Computer Interface (BCI) are expected to play a major role in field of medical-health monitoring in near future. Unfortunately, an increasing number of attacks to BCI applications underline the existence of security and privacy related issues, which gains tremendous attention amongst researchers. In this paper, a communication architecture is proposed for BCI applications, and an access control scheme is designed by employing Ciphertext-Policy Attribute Based Encryption (CP-ABE). The proposed scheme supports fully fine-grained attribute revocation by proxy re-encryption. The proposed scheme can efficiently and feasibly reduce the challenges of privacy preservation, and it works excellent in energy consumption and communication/ computation overhead.
  • loading
  • WOLPAW J, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control[J]. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 2002, 113(6): 767-791. doi: 10.1016/S1388-2457(02)00057-3.
    WOLPAW J, BIRBAUMER N, and HEETDERKS W. Brain-computer interface technology: A review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 164-173. doi: 10.1109/ TRE.2000.847807.
    Abdulkader S N, ATIA A, and MOSTAFA M S M. Brain computer interfacing: Applications and challenges[J]. Egyptian Informatics Journal, 2015, 16(2): 213-230. doi: 10.1016/j.eij.2015.06.002.
    BLONDET M V R, BADARINATH A, KHANNA C, et al. A wearable real-time BCI system based on mobile cloud computing[C]. International IEEE/EMBS Conference on Neural Engineering, San Diego, CA, USA, 2013: 739-742. doi: 10.1109/NER.2013.6696040.
    ELSAWY A S and ELDAWLATLY S. P300-based applications for interacting with smart mobile devices[C]. International IEEE/EMBS Conference on Neural Engineering. IEEE, Montpellier, France, 2015: 166-169. doi: 10.1109/NER.2015.7146586.
    HONDA K and KUDOH S N. Air brain: The easy telemetric system with smartphone for EEG signal and human behavior[C]. International Conference on Body Area Networks, Brussels, Belgium, 2013: 343-346. doi: 10.4108/ icst.bodynets.2013. 253918.
    LI Q Q, DING D, and CONTI M. Brain-computer interface applications: Security and privacy challenges[C]. IEEE Communications and Network Security, Florence, Italy, 2015: 663-666. doi: 10.1109/CNS.2015.7346884.
    MARTINOVIC I, DAVIES D, FRANK M, et al. On the feasibility of side-channel attacks with brain-computer interfaces[C]. Usenix Conference on Security Symposium, Berkeley CA USA, 2012: 34.
    LUBER B, FISHER C, APPELBAUM P S, et al. Non- invasive brain stimulation in the detection of deception: scientific challenges and ethical consequences[J]. Behavioral Sciences the Law, 2009, 27(2): 191-208. doi: 10.1002/bsl. 860.
    U.S. Centers for Medicare Medicaid Services. Hippa basics for providers: privacy, security, and breach notification rules[OL]. https://www.cms.gov/Outreach-and-Education/ Medicare-Learning-Network-MLN/MLNProducts/Downloads/HIPAAPrivacyandSecurityTextOnly.pdf. 2016.
    U.S. Federal Trade Commission. Federal trade commission act[OL]. https://www.ftc.gov/enforcement/statutes/federal- trade-commission-act.Apr.12, 2015.
    CHIZECK H J and BONACI T. Brain-computer interface anonymizer[OL]. https://docs.google.com/viewer?url= patentimages.storage.googleapis.com/pdfs/US20140228701.pdf. Aug.14, 2014.
    BONACI T, CALO R, and CHIZECK H. App stores for the brain: privacy and security in brain-computer interfaces[J]. Technology Society Magazine IEEE, 2015, 34(2): 32-39. doi: 10.1109/MTS.2015.2425551.
    VENKATASUBRAMANIAN K K, BANERIEE A, and GUPTA S K S. EKG-based key agreement in body sensor networks[C]. INFOCOM Workshops. IEEE, Phoenix, AZ, USA, 2008: 1-6. doi: 10.1109/INFOCOM.2008.4544608.
    CHERUKURI S, VENKATASUBRAMANIAN K K, and GUPTA S K S. BioSec: A biometric based approach for securing communication in wireless networks of biosensors implanted in the human body[C]. International Conference on Parallel Processing Workshops, Kaohsiung, 2003: 432-439. doi: 10.1109/ICPPW.2003.1240399.
    TAN C C, WANG H, ZHONG S, et al. Body sensor network security: An identity-based cryptography approach[C]. ACM Conference on Wireless Network Security, Alexandria, VA, USA, 2008: 148-153. doi: 10.1145/1352533.1352557.
    MALEK B and MIRI A. Combining attribute-based and access systems[C]. 2009 International Conference on Computational Science and Engineering, Vancouver, BC, Canada, 2009, 3: 305-312. doi: 10.1109/CSE.2009.157.
    HAN R F, WANG H X, XIAO Q, et al. A united access control model for systems in collaborative commerce[J]. Journal of Networks, 2009, 4(4): 279-289. doi: 10.4304/jnw. 4.4.279-289.
    WAN Z, LIU J, and DENG R H. HASBE: A hierarchical attribute-based solution for flexible and scalable access control in cloud computing[J]. IEEE Transactions on Information Forensics Security, 2012, 7(2): 743-754. doi: 10.1109/TIFS.2011.2172209.
    GOYAL V, PANDEY O, SAHAI A, et al. Attribute-based encryption for fine-grained access control of encrypted data [C]. ACM Conference on Computer and Communications Security, CCS 2006, Alexandria, VA, USA, 2006: 89-98. doi: 10.1145/1180405.1180418.
    冯登国, 陈成. 属性密码学研究[J]. 密码学报, 2014, 1(1): 1-12. doi: 10.13868/j.cnki.jcr.000001.
    FENG Dengguo and CHEN Cheng. Research on attribute- based cryptography[J]. Journal of Cryptologic Research, 2014, 1(1): 1-12. doi: 10.13868/j.cnki.jcr.000001.
    YU S, WANG C, REN K, et al. Attribute based data sharing with attribute revocation[C]. ACM Symposium on Information, Computer and Communications Security, ASIACCS 2010, Beijing, China, 2010: 261-270. doi: 10.1145/ 1755688.1755720.
    NARUSE T, MOHRI M, and SHIRAISHI Y. Provably secure attribute-based encryption with attribute revocation and grant function using proxy re-encryption and attribute key for updating[J]. Human-centric Computing and Information Sciences, 2015, 5(1): 1-13. doi: 10.1186/s13673-015-0027-0.
    WANDER A S, GURA N, EBERLE H, et al. Energy analysis of public-key cryptography for wireless sensor networks[C]. Proceedings of the Third IEEE International Conference on Pervasive Computing and Communications, Kauai Island, HI, USA, 2005: 324-331. doi: 10.1109/PERCOM.2005.18.
    REN Kui, ZENG Kai, LOU Wenjing, et al. On broadcast authentication in wireless sensor networks[C]. International Conference on Wireless Algorithms, Systems, and Applications, Xian, China, 2006: 502-514. doi: 10.1007/ 11814856_48.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1164) PDF downloads(232) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return