| Citation: | JI Jianrui, LIU Yezheng, JIANG Yuanchun. Recognizing Users Focuses on Social Network Based on Mixed-weight Combined Strategy[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2056-2062. doi: 10.11999/JEIT161348 | 
 
	                | YAN Zehua and LI Fang. News thread extraction based on topical n-gram model with a background distribution[C]. International Conference on Neural Information Processing, Berlin, 2011: 416-424. doi:  10.1007/978-3-642-24958-7_49. | 
| XING Chen, WANG Yuan, LIU Jie, et al. Hash tag-based sub- event discovery using mutually generative LDA in Twitter[C]. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, 2016: 2666-2672. | 
| ZHANG Xiaoming, CHEN Xiaoming, CHEN Yan, et al. Event detection and popularity prediction in microblogging [J]. Neurocomputing, 2015, 149(3): 1469-1480. doi: 10.1016/ j.neucom.2014.08.045. | 
| BLEI D, NG A, and JORDAN M. Latent dirichlet allocation [J]. Journal of Machine Learning Research, 2003, (3): 993-1022. | 
| WENG Jianshu, LIM E, JIANG Jing, et al. Twitterrank: Finding topic-sensitive influential twitterers[C]. Proceedings of the Third ACM International Conference on Web Search and Data Mining, New York, 2010: 261-270. doi: 10.1145/ 1718487.1718520. | 
| PHAN X, NGUYEN L, and HORIGUCHI S. Learning to classify short and sparse text  web with hidden topics from large-scale data collections[C]. Proceedings of the 17th International Conference on World Wide Web, Beijing, 2008: 91-100. doi:  10.1145/1367497.1367510. | 
| ZHANG Heng and ZHONG Guoqiang. Improving short text classification by learning vector representations of both words and hidden topics[J]. Knowledge-Based Systems, 2016, 102(12): 76-86. doi:  10.1016/j.knosys.2016.03.027. | 
| VO D and OCK C. Learning to classify short text from scientific documents using topic models with various types of knowledge[J]. Expert Systems with Applications, 2015, 42(3): 1684-1698. doi:  10.1016/j.eswa.2014.09.031. | 
| JIN O, LIU N, ZHAO Kai, et al. Transferring topical knowledge from auxiliary long texts for short text clustering [C]. Proceedings of the 20th ACM International Conference on Information and Knowledge Management, New York, 2011: 775-784. doi:  10.1145/2063576.2063689. | 
| CHENG Xueqi, YAN Xiaohui, LAN Yanyan, et al. Btm: Topic modeling over short texts[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(12): 2928-2941. doi:  10.1109/TKDE.2014.2313872. | 
| ZUO Yuan, WU Junjie, ZHANG Hui, et al. Topic modeling of short texts: A pseudo-document view[C]. Proceedings of the 22nd ACM international Conference on Knowledge Discovery and Data Mining, San Francisco, 2016: 2105-2114. doi:  10.1145/2939672.2939880. | 
| LIN Hao, SUN Bo, WU Junjie, et al. Topic detection from short text: A term-based consensus clustering method[C]. Proceedings of the 13th International Conference on Service Systems and Service Management, Kunming, 2016: 1-6. doi:  10.1109/ICSSSM.2016.7538624. | 
| ZHAO Waynexin, JIANG Jing, WENG Jianshu, et al. Comparing twitter and traditional media using topic models[C]. Proceedings of the 33rd European Conference on Information Retrieval, Dublin, 2011: 338-349. doi: 10.1007/ 978-3-642-20161-5_34. | 
| MIMNO D, WALLACH H, TALLEY E, et al. Optimizing semantic coherence in topic models[C]. Proceedings of the Conference on Empirical Methods in Natural Language Processing, Edinburgh, 2011: 262-272. | 
