Advanced Search
Volume 39 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
LI Cunxu, CHEN Baixiao. Spatial Sparsity Based Method on Calibration of Direction-dependent Array Errors[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2219-2224. doi: 10.11999/JEIT161318
Citation: LI Cunxu, CHEN Baixiao. Spatial Sparsity Based Method on Calibration of Direction-dependent Array Errors[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2219-2224. doi: 10.11999/JEIT161318

Spatial Sparsity Based Method on Calibration of Direction-dependent Array Errors

doi: 10.11999/JEIT161318
Funds:

The National Natural Science Foundation of China (61571344)

  • Received Date: 2016-12-08
  • Rev Recd Date: 2017-03-30
  • Publish Date: 2017-09-19
  • For calibration of direction-dependent gain-phase errors, with a few precisely calibrated instrumental sensors, a method that jointly estimates the direction-dependent gain-phase errors and the target azimuth by spatial sparsity of the signal is proposed. The array manifold that perturbed by direction-dependent gain-phase errors is denoted by the multiplication form of ideally array manifold and a gain-phase errors coefficient matrix, then the received signal is represented by sparse form. The calibration for gain-phase error problem is formulated as a dual optimization problem, through alternating iterative optimization method to acquire the optimal solution of the two optimization variables, so as to realize the signal incident angle and azimuth dependent amplitude and phase errors of the optimized calculation. In this paper, the proposed algorithm has better performance than the existing algorithm, performance of the proposed algorithm is approximate to the Cramer-Rao low bound. The simulation experiments verify the effectiveness and superiority of the proposed algorithm.
  • loading
  • FRIEDLANDER B. A sensitivity analysis of the MUSIC algorithm[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(10): 1740-1751. doi: 10.1109/29. 60105.
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986. 1143830.
    FERREOL A, LARZABAL P and VIBERG M. On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: Case of MUSIC [J]. IEEE Transactions on Signal Processing, 2006, 54(3): 907-920. doi: 10.1109/TSP.2005.861798.
    DAI Z, SU W, GU H, et al. Sensor gain-phase errors estimation using disjoint sources in unknown directions[J]. IEEE Sensors Journal, 2016, 16(10): 3724-3730. doi: 10.1109 /JSEN.2016.2531282.
    于斌, 宋铮, 张军, 等. 阵列天线阵元位置误差的一种有源校正方法[J]. 雷达科学与技术, 2004, 2(5): 315-320. doi: 10.3969 /j.issn.1672-2337.2004.05.013.
    YU Bing, SONG Zheng, ZHANG Jun, et al. A new technique for calibrating position uncertainty of sensor array using signal sources[J]. Radar Science and Technology, 2004, 2(5): 315-320. doi: 10.3969/j.issn.1672-2337.2004.05.013.
    Li J, JIN M, ZHENG Y, et al. Transmit and receive array gain-phase error estimation in bistatic MIMO radar[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14(3): 32-35. doi: 10.1109/LAWP.2014.2354334.
    王布宏, 王永良, 陈辉, 等. 均匀线阵互耦条件下的鲁棒DOA估计及互耦自校正[J]. 中国科学E辑: 技术科学, 2004, 34(2): 229-240. doi: 10.3321/j.issn:1006-9275.2004.02.010.
    WANG Buhong, WANG Yongliang, CHEN Hui, et al. Robust DOA estimation and mutual coupling self-calibration algorithm for uniform linear array[J]. Science in China Series E: Technological Sciences, 2004, 34(2): 229-240. doi: 10.3321/ j.issn:1006-9275.2004.02.010.
    王布宏, 王永良, 陈辉, 等. 方位依赖阵元幅相误差校正的辅助阵元法[J]. 中国科学E辑: 技术科学, 2004, 34(8): 906-918. doi: 10.3321/j.issn:1006-9275.2004.08.006.
    WANG Buhong, WANG Yongliang, CHEN Hui, et al. Array calibration of angularly dependent gain and phase uncertainties with carry-on instrumental sensors[J]. Science in China Series E: Technological Sciences, 2004, 34(8): 906-918. doi: 10.3321/j.issn:1006-9275.2004.08.006.
    王鼎, 潘苗, 吴瑛, 等. 基于辅助阵元的方位依赖幅相误差最大似然自校正: 针对确定信号模型[J]. 通信学报, 2011, 32(2): 34-41. doi: 10.3969/j.issn.1000-436X.2011.02.005.
    WANG D, PAN M, WU Y, et al. Maximum likelihood self- calibration for direction-dependent gain-phase errors with carry-on instrumental sensors: Case of deterministic signal model[J]. Journal on Communications, 2011, 32(2): 34-41. doi: 10.3969/j.issn.1000-436X.2011.02.005.
    LEI W and CHEN B. High-resolution DOA estimation for closely spaced correlated signals using unitary sparse Bayesian learning[J]. Electronics Letters, 2015, 51(3): 285-287. doi: 10.1049/el.2014.1317.
    YANG Z, XIE L, and ZHANG C. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38-43. doi: 10.1109/TSP.2012.2222378.
    WU J Q, ZHU W, and CHEN B. Compressed sensing techniques for altitude estimation in multipath conditions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1891-1900. doi: 10.1109/TAES.2015.130841.
    林波, 张增辉, 朱炬波, 等. 基于压缩感知的DOA估计稀疏化模型与性能分析[J]. 电子与信息学报, 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146.2013.00149.
    LIN Bo, ZHANG Zenghui, ZHU Jubo, et al. Sparsity model and perfomance analysis of DOA estimation with compressive sensing[J]. Journal Electronics Information Technology, 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146.2013.00149.
    ZHENG Y and CHEN B. Altitude measurement of low-angle target in complex terrain for very high-frequency radar[J]. IET Radar, Sonar Navigation, 2015, 9(8): 967-973. doi: 10.1049/iet-rsn.2014.0544.
    KAUR A and BUDHIRAJA S. Sparse signal reconstruction via orthogonal least squares[C]. 2014 Fourth International Conference on Advanced Computing Communication Technologies, Rohtak, 2014: 133-137. doi: 10.1109/ACCT. 2014.49.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1179) PDF downloads(251) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return