Advanced Search
Volume 39 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
CUI Weijia, LU Hang, BA Bin. Iterative Frequency Estimation Algorithm Based on Interpolated Zoom Spectrum[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2141-2147. doi: 10.11999/JEIT161312
Citation: CUI Weijia, LU Hang, BA Bin. Iterative Frequency Estimation Algorithm Based on Interpolated Zoom Spectrum[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2141-2147. doi: 10.11999/JEIT161312

Iterative Frequency Estimation Algorithm Based on Interpolated Zoom Spectrum

doi: 10.11999/JEIT161312
Funds:

The National Natural Science Foundation of China (61401513)

  • Received Date: 2016-12-08
  • Rev Recd Date: 2017-03-23
  • Publish Date: 2017-09-19
  • In order to solve the problem of unhomogeneities of estimation error and expensive computing of existing algorithms, an iterative frequency estimation algorithm based on interpolated zoom spectrum is proposed. Firstly, fast Fourier transform algorithm is applied to get the frequency corresponding to the peak spectral amplitude of the half-length signal. The unbiased estimation of frequency of the signal is then given based on the zoom spectra, which are calculated with the half-length signal. The zoom spectra are updated with the complete signal and the frequency is estimated with the updated zoom spectra, lastly. Computing cost analysis proves the superiority of the algorithms when length of signal is long compared with the algorithms in the references. Simulation result verifies good performance of distribution of estimation error and estimation error of the proposed algorithm is closer to the Cramer-Rao lower bound at the circumstance of high signal to noise ratio.
  • loading
  • SHEN Yanlin, TU Yaqing, CHEN Linjun, et al. A phase match based frequency estimation method for sinusoidal signals[J]. Review of Scientific Instruments, 2015, 86(4): 721-726. doi: 10.1063/1.4916365.
    DJUKANOVIC S. An accurate method for frequency estimation of a real sinusoid[J]. IEEE Signal Processing Letters, 2016, 23(7): 915-918. doi: 10.1109/LSP.2016. 2564102.
    SYED A A, SUN Q, and FOROOSH H. Frequency estimation of sinusoids from nonuniform samples[J]. Signal Processing, 2016, 129: 67-81. doi: 10.1016/j.sigpro.2016.05. 024.
    LUO Jiufei, XIE Zhijiang, and XIE Ming. Frequency estimation of the weighted real tones or resolved multiple tones by iterative interpolation DFT algorithm[J]. Digital Signal Processing, 2015, 41(6): 118-129. doi: 10.1016/j.dsp. 2015.03.002.
    黄翔东, 王越冬, 靳旭康, 等. 无窗全相位FFT/FFT相位差频移补偿频率估计器[J]. 电子与信息学报, 2016, 38(5): 1135-1142. doi: 10.11999/JEIT151041.
    HUANG Xiangdong, WANG Yuedong, JIN Xukang, et al. No-windowed apFFT/FFT phase difference frequency estimator based on frequency-shift compensation[J]. Journal of Electronics Information Technology, 2016, 38(5): 1135-1142. doi: 10.11999/JEIT151041.
    RIFE D C and VINCENT G A. Use of the discrete fourier transform in the measurement of frequencies and levels of tones[J]. Bell Labs Technical Journal, 1970, 49(2): 197-228. doi: 10.1002/j.1538-7305.1970.tb01766.x.
    邓振淼, 刘渝, 王志忠. 正弦波频率估计的修正Rife算法[J]. 数据采集与处理, 2006, 21(4): 473-477. doi: 10.3969/j.issn. 1004-9037.2006.04.020.
    DENG Zhenmiao, LIU Yu, and WANG Zhizhong. Modified Rife algorithm for frequency estimation of sinusoid wave[J]. Journal of Data Acquisition and Processing, 2006, 21(4): 473-477. doi: 10.3969/j.issn.1004-9037.2006.04.020.
    胥嘉佳, 刘渝, 邓振淼, 等. 正弦波信号频率估计快速高精度递推算法的研究[J]. 电子与信息学报, 2009, 31(4): 865-869. doi: 10.3724/SP.J.1146.2008.00075.
    XU Jiajia, LIU Yu, DENG Zhenmiao, et al. A research of fast and accurate recursive algorithm for frequency estimation of sinusoid signal[J]. Journal of Electronics Information Technology, 2009, 31(4): 865-869. doi: 10.3724/SP.J.1146. 2008.00075.
    QUINN B G. Estimation of frequency, amplitude, and phase from the DFT of a time series[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 814-817. doi: 10.1109/78. 558515.
    MACLEOD M D. Fast nearly ML estimation of the parameters of real or complex single tones or resolved multiple tones[J]. IEEE Transactions on Signal Processing, 1998, 46(1): 141-148. doi: 10.1109/78.651200.
    MAO X H and TING H. Estimation of complex single-tone parameters in the DFT domain[J]. IEEE Transactions on Signal Processing, 2010, 58(7): 3879-3883. doi: 10.1109/TSP. 2010.2046693.
    CANDAN C. A method for fine resolution frequency estimation from three DFT samples[J]. IEEE Signal Processing Letters, 2011, 18(6): 351-354. doi: 10.1109/LSP. 2011.2136378.
    CANDAN C. Analysis and further improvement of fine resolution frequency estimation method from three DFT samples[J]. IEEE Signal Processing Letters, 2013, 20(9): 913-916. doi: 10.1109/LSP.2013.2273616.
    JAN-RAY L and SHYING L. Analytical solutions for frequency estimators by interpolation of DFT coefficients[J]. Signal Processing, 2014, 100: 93-100. doi: 10.1016/j.sigpro. 2014.01.012.
    LIANG X, LIU A, PAN X, et al. A new and accurate estimator with analytical expression for frequency estimation [J]. IEEE Communications Letters, 2016, 20(1): 105-108. doi: 10.1109/LCOMM.2015.2496149.
    刘进明, 应怀樵. FFT谱连续细化分析的富里叶变换法[J]. 振动工程学报, 1995, 8(2): 162-166.
    LIU Jinming and YING Huaiqiao. Zoom FFT spectrum by Fourier transform[J]. Journal of Vibration Engineering, 1995, 8(2): 162-166.
    齐国清, 贾欣乐. 插值FFT估计正弦信号频率的精度分析[J]. 电子学报, 2004, 32(4): 625-629. doi: 10.3321/j.issn:0372- 2112.2004.04.022.
    QI Guoqing and JIA Xinle. Accuracy analysis of frequency estimation of sinusoid based on interpolated FFT[J]. Acta Electronica Sinica, 2004, 32(4): 625-629. doi: 10.3321/j.issn: 0372-2112.2004.04.022.
    黄翔东, 孟天伟, 丁道贤, 等. 前后向子分段相位差频率估计法[J]. 物理学报, 2014, 63(21): 202-208. doi: 10.7498/aps.63. 214304.
    HUANG Xiangdong, MENG Tianwei, DING Daoxian, et al. A novel phase difference frequency estimator based on forward and backward sub-segmenting[J]. Acta Physica Sinica, 2014, 63(21): 202-208. doi: 10.7498/aps.63.214304.
    曹燕. 含噪实信号频率估计算法研究[D]. 华南理工大学, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1354) PDF downloads(315) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return