| Citation: | ZHU Chengang, CHENG Guang. Program Popularity Prediction Model of Internet TV Based on Viewing Behavior[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2504-2512. doi: 10.11999/JEIT161310 | 
 
	                | 朱轶, 糜正琨, 王文鼐. 一种基于内容流行度的内容中心网络缓存概率置换策略[J]. 电子与信息学报, 2013, 35(6): 1305-1310. doi:  10.3724/SP.J.1146.2012.01143. | 
| ZHU Yi, MI Zhengkun, and WANG Wennai. A cache probability replacement policy based on content popularity in content centric networks[J]. Journal of Electronics  Information Technology, 2013, 35(6): 1305-1310. doi: 10.3724 /SP.J.1146.2012.01143. | 
| 芮兰兰, 彭昊, 黄豪球, 等. 基于内容流行度和节点中心度匹配的信息中心网络缓存策略[J]. 电子与信息学报, 2016, 38(2): 325-331. doi:  10.11999/JEIT150626. | 
| RUI Lanlan, PENG Hao, HUANG Haoqiu, et al. Popularity and centrality based selective caching scheme for information- centric networks[J]. Journal of Electronics  Information Technology, 2016, 38(2): 325-331. doi:  10.11999/JEIT150626. | 
| GMEZ V, KALTENBRUNNER A, and LPEZ V. Statistical analysis of the social network and discussion threads in slashdot[C]. ACM International Conference on World Wide Web, Beijing, China, 2008: 645-654. doi: 10.1145 /1367497.1367585. | 
| SZABO G and HUBERMAN B A. Predicting the popularity of online content[J]. Communications of the ACM, 2010, 53(8): 80-88. doi:  10.1145/1787234.1787254. | 
| CASTILLO C, ELHADDAD M, PFEFFER J, et al. Characterizing the life cycle of online news stories using social media reactions[C]. ACM International Conference on Computer Supported Cooperative Work  Social Computing, Baltimore, MD, USA, 2014: 211-223. doi: 10.1145/2531602. 2531623. | 
| PINTO H, ALMEIDA J M, and GONALVES M A. Using early view patterns to predict the popularity of YouTube videos[C]. ACM International Conference on Web Search and Data Mining, Rome, Italy, 2013: 365-374. doi: 10.1145/ 2433396.2433443. | 
| GAO S, MA J, and CHEN Z. Modeling and predicting retweeting dynamics on microblogging platforms[C]. ACM International Conference on Web Search and Data Mining, Shanghai, China, 2015: 107-116. doi: 10.1145/2684822. 2685303. | 
| CRANE R and SORNETTE D. Robust dynamic classes revealed by measuring the response function of a social system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(41): 15649-15653. doi:  10.1073/pnas.0803685105. | 
| WU B, MEI T, CHENG W H, et al. Unfolding temporal dynamics: Predicting social media popularity using multi-scale temporal decomposition[C]. Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 2016: 32-38. doi:  10.13140/RG.2.2.27504.66565. | 
| WU J, ZHOU Y, CHIU D M, et al. Modeling dynamics of online video popularity[C]. IEEE International Symposium on Quality of Service, Portland, OR, USA, 2015: 141-146. doi:  10.1109/IWQoS.2015.7404724. | 
| FONTANINI G, BERTINI M, and DEL BIMBO A. Web video popularity prediction using sentiment and content visual features[C]. ACM International Conference on Multimedia Retrieval, New York, NY, USA, 2016: 289-292. doi:  10.1145/2911996.2912053. | 
| ZAMAN T, FOX E B, and BRADLOW E T. A Bayesian approach for predicting the popularity of tweets[J]. The Annals of Applied Statistics, 2014, 8(3): 1583-1611. doi:  10.1214/14-AOAS741. | 
| WANG J, ZHANG Z, and ZHANG W. Support vector machine based on double-population particle swarm optimization[J]. Journal of Convergence Information Technology, 2013, 8(8): 33-43. doi: 10.4156/jcit.vol8.issue8. 106. | 
