Advanced Search
Volume 39 Issue 10
Oct.  2017
Turn off MathJax
Article Contents
ZHU Chengang, CHENG Guang. Program Popularity Prediction Model of Internet TV Based on Viewing Behavior[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2504-2512. doi: 10.11999/JEIT161310
Citation: ZHU Chengang, CHENG Guang. Program Popularity Prediction Model of Internet TV Based on Viewing Behavior[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2504-2512. doi: 10.11999/JEIT161310

Program Popularity Prediction Model of Internet TV Based on Viewing Behavior

doi: 10.11999/JEIT161310
Funds:

The National 863 Program of China (2015AA 015603), The Prospective Research Program on Future Networks of Jiangsu Province (BY2013095-5-03), The Six Industries Talent Peaks Plan of Jiangsu Province (2011-DZ024)

  • Received Date: 2016-12-08
  • Rev Recd Date: 2017-06-15
  • Publish Date: 2017-10-19
  • Predicting program popularity is a key issue for design and optimization of Internet TV system. Existing prediction methods usually need large quantity of samples and long training time, while the prediction accuracy is poor for the burst hot programs. This paper introduces an Internet TV Program Popularity Prediction model based on viewing Behavioral Dynamics features (BD3P). 6 billion view behavior records from 2.8 million subscribers of a certain Internet TV platform are measured, and the evolution process of program popularity is divided into 4 types based on behavioral dynamics features, which is endogenous, internal subcritical, exogenous and exogenous subcritical. The prediction models of Internet TV program popularity are constructed for each type using Least Squares Support Vector Machines (LSSVM) with double population Particle Swarm Optimization (PSO), and these models are applied to the actual data test. The experimental results show that, compared to the existing prediction model, the prediction accuracy can be increased by more than 17%, and the forecast period can be effectively shortened.
  • loading
  • 朱轶, 糜正琨, 王文鼐. 一种基于内容流行度的内容中心网络缓存概率置换策略[J]. 电子与信息学报, 2013, 35(6): 1305-1310. doi: 10.3724/SP.J.1146.2012.01143.
    ZHU Yi, MI Zhengkun, and WANG Wennai. A cache probability replacement policy based on content popularity in content centric networks[J]. Journal of Electronics Information Technology, 2013, 35(6): 1305-1310. doi: 10.3724 /SP.J.1146.2012.01143.
    芮兰兰, 彭昊, 黄豪球, 等. 基于内容流行度和节点中心度匹配的信息中心网络缓存策略[J]. 电子与信息学报, 2016, 38(2): 325-331. doi: 10.11999/JEIT150626.
    RUI Lanlan, PENG Hao, HUANG Haoqiu, et al. Popularity and centrality based selective caching scheme for information- centric networks[J]. Journal of Electronics Information Technology, 2016, 38(2): 325-331. doi: 10.11999/JEIT150626.
    GMEZ V, KALTENBRUNNER A, and LPEZ V. Statistical analysis of the social network and discussion threads in slashdot[C]. ACM International Conference on World Wide Web, Beijing, China, 2008: 645-654. doi: 10.1145 /1367497.1367585.
    SZABO G and HUBERMAN B A. Predicting the popularity of online content[J]. Communications of the ACM, 2010, 53(8): 80-88. doi: 10.1145/1787234.1787254.
    CASTILLO C, ELHADDAD M, PFEFFER J, et al. Characterizing the life cycle of online news stories using social media reactions[C]. ACM International Conference on Computer Supported Cooperative Work Social Computing, Baltimore, MD, USA, 2014: 211-223. doi: 10.1145/2531602. 2531623.
    PINTO H, ALMEIDA J M, and GONALVES M A. Using early view patterns to predict the popularity of YouTube videos[C]. ACM International Conference on Web Search and Data Mining, Rome, Italy, 2013: 365-374. doi: 10.1145/ 2433396.2433443.
    GAO S, MA J, and CHEN Z. Modeling and predicting retweeting dynamics on microblogging platforms[C]. ACM International Conference on Web Search and Data Mining, Shanghai, China, 2015: 107-116. doi: 10.1145/2684822. 2685303.
    CRANE R and SORNETTE D. Robust dynamic classes revealed by measuring the response function of a social system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(41): 15649-15653. doi: 10.1073/pnas.0803685105.
    WU B, MEI T, CHENG W H, et al. Unfolding temporal dynamics: Predicting social media popularity using multi-scale temporal decomposition[C]. Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 2016: 32-38. doi: 10.13140/RG.2.2.27504.66565.
    WU J, ZHOU Y, CHIU D M, et al. Modeling dynamics of online video popularity[C]. IEEE International Symposium on Quality of Service, Portland, OR, USA, 2015: 141-146. doi: 10.1109/IWQoS.2015.7404724.
    FONTANINI G, BERTINI M, and DEL BIMBO A. Web video popularity prediction using sentiment and content visual features[C]. ACM International Conference on Multimedia Retrieval, New York, NY, USA, 2016: 289-292. doi: 10.1145/2911996.2912053.
    ZAMAN T, FOX E B, and BRADLOW E T. A Bayesian approach for predicting the popularity of tweets[J]. The Annals of Applied Statistics, 2014, 8(3): 1583-1611. doi: 10.1214/14-AOAS741.
    WANG J, ZHANG Z, and ZHANG W. Support vector machine based on double-population particle swarm optimization[J]. Journal of Convergence Information Technology, 2013, 8(8): 33-43. doi: 10.4156/jcit.vol8.issue8. 106.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1408) PDF downloads(251) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return