Advanced Search
Volume 39 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
DAI Zibin, MA Chao, LI Wei, NAN Longmei. Wide-width Bit Permutation Instructions for Accelerating Cryptographic Algorithms[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2119-2126. doi: 10.11999/JEIT161285
Citation: DAI Zibin, MA Chao, LI Wei, NAN Longmei. Wide-width Bit Permutation Instructions for Accelerating Cryptographic Algorithms[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2119-2126. doi: 10.11999/JEIT161285

Wide-width Bit Permutation Instructions for Accelerating Cryptographic Algorithms

doi: 10.11999/JEIT161285
Funds:

The National Natural Science Foundation of China (61404175)

  • Received Date: 2016-11-25
  • Rev Recd Date: 2017-06-05
  • Publish Date: 2017-09-19
  • Wide-width bit permutation is a very commonly used operation in symmetric cryptographic algorithms. However, current word-oriented general microprocessors are inefficient to cope with the complex bit-level permutation operations. To solve this problem, two schemes for 2N-2N and kN-kN permutations are proposed respectively, including two extended instructions BEX and BEX-ROT. Furthermore, the efficient hardware implementation of the instructions are studied, and then a unified hardware circuit named RERS (Reconfigurable Extract and Rotation Shifter) is proposed with a corresponding reconfigurable routing algorithm. The RERS can share hardware resources to achieve the purpose of reducing area. The experimental results show that the proposed schemes can truly decrease the number of instructions for accomplishing an arbitrary wide-width bit permutation (instructions reduced by 10 times), which greatly accelerate the performance of microprocessors. At the same time, the overhead of hardware resources and delay caused by the two extended instructions is very low, which will not affect the normal operating frequency of the original microprocessors.
  • loading
  • AO T, HE Z, and DAI K. Low-cost bit permutation circuit with concise configuration rule[C]. Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, 2015: 158-160.
    SHAN Weiwei, CHEN Xin, LU Yinchao, et al. A novel combinatorics-based reconfigurable bit permutation network and its circuit implementation[J]. Chinese Journal of Electronics, 2015, 24(3): 513-517. doi: 10.1049/cje.2015.07. 013.
    JOLFAEI A, WU X, and MUTHUKKUMARASAMY V. On the security of permutation-only image encryption schemes[J]. IEEE Transactions on Information Forensics and Security, 2015, 11(2): 235-246. doi: 10.1109/TIFS.2015.2489178.
    LI W, YU F, and MA Z. Efficient circuit for parallel bit reversal[J]. IEEE Transactions on Circuits Systems II Express Briefs, 2016, 63(4): 381-385. doi: 10.1109/TCSII. 2015.2504943.
    RAVAL N, BANSOD G, PISHAROTY D N, et al. Implementation of efficient bit permutation box for embedded security[J]. WSEAS Transactions on Computers, 2014(13): 442-451.
    BANSOD G, GUPTA A, GHOSH A, et al. Experimental analysis and implementation of bit level permutation instructions for embedded security[J]. WSEAS Transactions on Information Science Applications, 2013, 10(9): 303-312.
    SHIBUTANI K, ISOBE T, HIWATARI H, et al. PICCOLO: An ultra-lightweight blockcipher[C]. Cryptographic Hardware and Embedded Systems-CHES 2011, Nara, 2011: 342-357. doi: 10.1007/978-3-642-23951-9_23.
    BOGDANOV A, KNUDSEN L R, LEANDER G, et al. PRESENT: An ultra-lightweight block cipher[J]. Lecture Notes in Computer Science, 2007, 4727: 450-466. doi: 10.1007 /978-3-540-74735-2_31.
    MINIER M and GILBERT H. Stochastic cryptanalysis of crypton[C]. FAST Software Encryption, International WorkShop, FSE 2000, New York, 2000: 121-133. doi: 10.1007 /3-540-44706-7_9.
    BIHAM E, ANDERSON R, and KNUDSEN L. SERPENT: a new block cipher proposal[J]. Lecture Notes in Computer Science, 1998, 1372: 222-238. doi: 10.1007/3-540-69710- 1_15.
    CHENG H, HEYS H M, and WANG C. PUFFIN: A novel compact block cipher targeted to embedded digital systems[C]. Euromicro Conference on Digital System Design Architectures Methods and Tools, Parma, 2008: 383-390. doi: 10.1109/DSD.2008.34.
    HILEWITZ Y and LEE R B. Fast bit gather, bit scatter and bit permutation instructions for commodity microprocessors [J]. Journal of Signal Processing Systems, 2008, 53(1):145-169. doi: 10.1007/s11265-008-0212-8.
    KOLAY S, KHURANA S, SADHUKHAN A, et al. PERMS: A bit permutation instruction for accelerating software cryptography[C]. Euromicro Conference on Digital System Design, Los Alamitos, 2013: 963-968. doi: 10.1109/DSD.2013. 109.
    SANGEETHA M and JAGADEESWARI M. Design and implementation of new lightweight encryption technique[J]. International Journal of Innovative Research in Science Engineering and Technology, 2016, 5(3): 8610-8617.
    常忠祥, 戴紫彬, 李伟, 等. 基于互连网络的比特置换实现技术[J]. 计算机工程与设计, 2014(8): 2640-2644. doi: 10.3969/ j.issn.1000 -7024.2014.08.004.
    CHANG Zhongxiang, DAI Zibin, LI Wei, et al. Bit permutation based on interconnection network[J]. Computer Engineering and Design, 2014(8): 2640-2644. doi: 10.3969/ j.issn.1000-7024.2014.08.004.
    SHI Z J. Bit permutation instructions: Architecture, implementation, and cryptographic properties[D]. [Doctoral dissertation]. Princeton University, 2004.
    HILEWITZ Y and LEE R B. A new basis for shifters in general-purpose processors for existing and advanced bit manipulations[J]. IEEE Transactions on Computers, 2009, 58(8):1035-1048. doi: 10.1109/TC.2008.219.
    SAYILAR G and CHIOU D. CRYPTORAPTOR: High throughput reconfigurable cryptographic processor[C]. IEEE /ACM International Conference on Computer-Aided Design, San Jose, 2014: 155-161. doi: 10.1109/ICCAD.2014.7001346.
    BENHADJYOUSSEF N, ELHADJYOUSSEF W, MACHHOUT M, et al. Enhancing a 32-bit processor core with efficient cryptographic instructions[J]. Journal of Circuits, Systems Computers, 2015, 24(10): 1550158-1550178. doi: 10.1142/S0218126615501583.
    胡敏, 卢永江, 刘兵. 基于CK810处理器的汇编链接时优化[J]. 计算机工程, 2014, 40(11): 250-254. doi: 10.3969/j.issn. 1000-3428.2014.11.050.
    HU Min, LU Yongjiang, and LIU Bing. Assembly and link time optimization based on CK810 processor[J]. Computer Engineering, 2014, 40(11): 250-254. doi: 10.3969/j.issn.1000- 3428.2014.11.050.
    LIU B and BAAS B M. Parallel AES encryption engines for many-core processor arrays[J]. IEEE Transactions on Computers, 2013, 62(3): 536-547. doi: 10.1109/TC.2011.251.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1483) PDF downloads(259) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return