Advanced Search
Volume 39 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
ZHOU Yang, WU Dewei. Location Estimation Model Based on the Transformation from Grid Cells to Place Cells[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2272-2276. doi: 10.11999/JEIT161284
Citation: ZHOU Yang, WU Dewei. Location Estimation Model Based on the Transformation from Grid Cells to Place Cells[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2272-2276. doi: 10.11999/JEIT161284

Location Estimation Model Based on the Transformation from Grid Cells to Place Cells

doi: 10.11999/JEIT161284
Funds:

The National Natural Science Foundation of China (61273048, 61603409)

  • Received Date: 2016-11-25
  • Rev Recd Date: 2017-03-17
  • Publish Date: 2017-09-19
  • To achieve intelligent and autonomous positioning for the vehicle, this paper presents a location estimation model based on the transformation from grid cells to place cells. Combining with the firing characteristic of the grid cells, place cells, and the information transformation between them, this location estimation model is divided into three parts, including the learning and memorizing of spatial environment, the perception of the motion state and the estimation of the spatial location. The principle and the specific steps of each part are discussed. Finally, the proposed model is applied to vehicles positioning by simulation. Simulation validates that the proposed model is feasible to achieve vehicles autonomous positioning, and the positioning performance can be adjusted by changing the parameters of grid cells and place cells included in the model.
  • loading
  • 李伟龙, 吴德伟, 周阳, 等. 基于生物位置细胞放电机理的空间位置表征方法[J]. 电子与信息学报, 2016, 38(8): 2040-2046. doi: 10.11999/JEIT151331.
    LI Weilong, WU Dewei, ZHOU Yang, et al. A method of spatial place representation based on biological place cells firing[J]. Journal of Electronics Information Technology, 2016, 38(8): 2040-2046. doi: 10.11999/JEIT151331.
    ZHOU Y, WU D W, DU J, et al. A computational model for landmarks acquisition in positioning[J]. Journal of Intelligent Robotic Systems, 2016, 82(3): 537-553. doi: 10.1007/ s10846-015-0276-1.
    OKEEFE J and DOSLROVSKV J. The hippocampus as a spatial map. preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 1971, 34(1): 171-175. doi: 10.1016/0006-8993(71)90358-1.
    KEINATH A T. The preferred directions of conjunctive grid x head direction cells in the medial entorhinal cortex are periodically organized[J]. Plos One, 2016, 11(3): e0152041. doi: 10.1371/journal.pone.0152041.
    BUSH D, BARRY C, MANSON D, et al. Using grid cells for navigation[J]. Neuron, 2015, 87(3): 507520. doi: 10.1016/j. neuron.2015.07.006.
    MCNAUGHTON B L, BATTAGLIA F P, JENSEN O, et al. Path integration and the neural basis of the cognitive map [J]. Neuroscience, 2006, 7(8): 663-678. doi: 10.1038/nrn1932.
    GAUSSIER P, REVEL A, BANQUET J P, et al. From view cells and place cells to cognitive map learning: Processing stages of the hippocampal system[J]. Biological Cybernetics, 2002, 86(1): 15-28. doi: 10.1007/s004220100269.
    JAUFFRET A, CUPERLIER N, GAUSSIER P, et al. Multimodal integration of visual place cells and grid cells for navigation tasks of a real robot[J]. LNAI, 2012: 136-145. doi: 10.1007/978-3-642-33093-3_14.
    WALTERS D M and STRINGER S M. Path integration of head direction: Updating a packet of neural activity at the correct speed using neuronal time constants[J]. Plos One, 2013, 8(3): e58330. doi: 10.1371/journal.pone.0058330.
    ERDEM U M and HASSELMO M E. A biologically inspired hierarchical goal directed navigation model[J]. Journal of Physiology-Paris, 2014, 108(1): 28-37. doi: 10.1016/j. jphysparis.2013.07.002.
    HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex[J]. Nature, 2005, 436(7052): 801-806. doi: 10.1038/nature03721.
    LYTTLE D, LIN K, and FELLOUS J M. Coding, stability, and non-spatial inputs in a modular grid-to-place cell model[J]. BMC Neuroscience, 2012, 13(1): 141-142. doi: 10.1186/1471-2202-13-s1-p141.
    JAUFFRET A, CUPERLIER N, and GAUSSIER P. From grid cells and visual place cells to multimodal place cell: A new robotic architecture[J]. Frontiers in Neurorobotics, 2015, 9: 1-20. doi: 10.3389/fnbot.2015.00001.
    MOSER E I, KROPFF E, and MOSER M B. Place cells, grid cells, and the brains spatial representation system[J]. Annual Review of Neuroscience, 2008, 31(1): 69-89. doi: 10.1146/ annurev.neuro.31.061307.090723.
    GIOCOMO L M, MOSER M B, and MOSER E I. Computational models of grid cells[J]. Neuron, 2011, 71(4): 589-603. doi: 10.1016/j.neuron.2011.07.023.
    SI B and TREVES A. The role of competitive learning in the generation of DG fields from EC inputs[J]. Cognitive Neurodynamics, 2009, 3(2): 177-187. doi: 10.1007/s11571- 009-9079-z.
    OKEEFE J and BURGES N. Geometrical determinants of the place fields of hippocampal neurons[J]. Nature, 1996, 381(6581): 425-428. doi: 10.1038/381425a0.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1339) PDF downloads(264) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return